Plasmon-Enhanced Electrochemiluminescence at the Single-Nanoparticle Level
Ying Wei
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorYuchen Zhang
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorJiahao Pan
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorTian Chen
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorDr. Xing Xing
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorProf. Weihua Zhang
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Zhenda Lu
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorYing Wei
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorYuchen Zhang
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorJiahao Pan
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorTian Chen
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorDr. Xing Xing
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorProf. Weihua Zhang
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Zhenda Lu
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorAbstract
Plasmon-enhanced electrochemiluminescence (ECL) at the single-nanoparticle (NP) level was investigated by ECL microscopy. The Au NPs were assembled into an ordered array, providing a high-throughput platform that can easily locate each NP in sequential characterizations. A strong dependence of ECL intensity on Au NP configurations was observed. We demonstrate for the first time that at the single-particle level, the ECL of Ru(bpy)32+-TPrA was majorly quenched by small Au NPs (<40 nm), while enhanced by large Au ones (>80 nm) due to the localized surface plasmon resonance (LSPR). Notably, the ECL intensity was further increased by the coupling effect of neighboring Au NPs. Finite Difference Time Domain (FDTD) simulations conformed well with the experimental results. This plasmon enhanced ECL microscopy for arrayed single NPs provides a reliable tool for screening electrocatalytic activity at a single particle.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202214103-sup-0001-misc_information.pdf764.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. Xu, J. S. Kong, Y.-T. E. Yeh, P. Chen, Nat. Mater. 2008, 7, 992–996;
- 1bH.-J. Lu, C.-H. Xu, J.-J. Xu, H.-Y. Chen, Anal. Chem. 2019, 91, 14757–14764;
- 1cC. Nahm, H. Choi, J. Kim, D.-R. Jung, C. Kim, J. Moon, B. Lee, B. Park, Appl. Phys. Lett. 2011, 99, 253107;
- 1dG. Yang, J. Nanda, B. Wang, G. Chen, D. T. Hallinan Jr., ACS Appl. Mater. Interfaces 2017, 9, 13457–13470;
- 1eD. Wang, L. Guo, R. Huang, B. Qiu, Z. Lin, G. Chen, Sci. Rep. 2015, 5, 7954;
- 1fJ. Sun, F. Zhou, H. Hu, N. Li, M. Xia, L. Wang, X. Wang, G. Wang, Anal. Chem. 2020, 92, 6136–6143;
- 1gQ. Zhang, Y. Tian, Z. Liang, Z. Wang, S. Xu, Q. Ma, Anal. Chem. 2021, 93, 3308–3314.
- 2
- 2aM.-M. Chen, W. Zhao, M.-J. Zhu, X.-L. Li, C.-H. Xu, H.-Y. Chen, J.-J. Xu, Chem. Sci. 2019, 10, 4141–4147;
- 2bM.-J. Zhu, J.-B. Pan, Z.-Q. Wu, X.-Y. Gao, W. Zhao, X.-H. Xia, J.-J. Xu, H.-Y. Chen, Angew. Chem. Int. Ed. 2018, 57, 4010–4014; Angew. Chem. 2018, 130, 4074–4078;
- 2cM.-M. Chen, C.-H. Xu, W. Zhao, H.-Y. Chen, J.-J. Xu, Chem. Commun. 2020, 56, 3413–3416;
- 2dY. Li, J. T. Cox, B. Zhang, J. Am. Chem. Soc. 2010, 132, 3047–3054.
- 3J. Kim, C. Renault, N. Nioradze, N. Arroyo-Currás, K. C. Leonard, A. J. Bard, J. Am. Chem. Soc. 2016, 138, 8560–8568.
- 4
- 4aX. Shan, I. Díez-Pérez, L. Wang, P. Wiktor, Y. Gu, L. Zhang, W. Wang, J. Lu, S. Wang, Q. Gong, J. Li, N. Tao, Nat. Nanotechnol. 2012, 7, 668–672;
- 4bX. Shan, U. Patel, S. Wang, R. Iglesias, N. Tao, Science 2010, 327, 1363–1366.
- 5
- 5aJ. Dong, Y. Lu, Y. Xu, F. Chen, J. Yang, Y. Chen, J. Feng, Nature 2021, 596, 244–249;
- 5bM. J. Rust, M. Bates, X. Zhuang, Nat. Methods 2006, 3, 793–796;
- 5cY. Zhang, J. M. Lucas, P. Song, B. Beberwyck, Q. Fu, W. Xu, A. P. Alivisatos, Proc. Natl. Acad. Sci. USA 2015, 112, 8959–8964.
- 6M. M. Richter, Chem. Rev. 2004, 104, 3003–3036.
- 7
- 7aS. Pan, J. Liu, C. M. Hill, J. Phys. Chem. C 2015, 119, 27095–27103;
- 7bA. J. Wilson, K. Marchuk, K. A. Willets, Nano Lett. 2015, 15, 6110–6115;
- 7cJ. Zhang, J. Zhou, C. Tian, S. Yang, D. Jiang, X.-X. Zhang, H.-Y. Chen, Anal. Chem. 2017, 89, 11399–11404.
- 8
- 8aG. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, M. H. Mikkelsen, Nat. Photonics 2014, 8, 835–840;
- 8bA. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. E. Moerner, Nat. Photonics 2009, 3, 654–657;
- 8cO. L. Muskens, V. Giannini, J. A. Sánchez-Gil, J. Gómez Rivas, Nano Lett. 2007, 7, 2871–2875;
- 8dP. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett. 2006, 96, 113002.
- 9D. Wang, Y. Li, Z. Lin, B. Qiu, L. Guo, Anal. Chem. 2015, 87, 5966–5972.
- 10X. Xing, Z. Man, J. Bian, Y. Yin, W. Zhang, Z. Lu, Nat. Commun. 2020, 11, 6002.
- 11H. Zhang, X. Xing, J. Zhu, T. Chen, Y. Zhang, W. Zhang, Z. Lu, ACS Appl. Mater. Interfaces 2019, 11, 38347–38352.
- 12
- 12aL. Novotny, Appl. Phys. Lett. 1996, 69, 3806–3808;
- 12bJ. B. Khurgin, G. Sun, R. A. Soref, Appl. Phys. Lett. 2009, 94, 071103;
- 12cP. Moutet, N. M. Sangeetha, L. Ressier, N. Vilar-Vidal, M. Comesaña-Hermo, S. Ravaine, R. A. L. Vallée, A. M. Gabudean, S. Astilean, C. Farcau, Nanoscale 2015, 7, 2009–2022;
- 12dE. Fort, S. Grésillon, J. Phys. D 2008, 41, 013001;
- 12eS. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, Phys. Rev. Lett. 2006, 97, 017402.
- 13E. M. Purcell, H. C. Torrey, R. V. Pound, Phys. Rev. 1946, 69, 37–38.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.