An Atom-Economic Enzymatic Cascade Catalysis for High-Throughput RAFT Synthesis of Ultrahigh Molecular Weight Polymers
Ruoyu Li
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 China
Search for more papers by this authorShudi Zhang
Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012 China
Search for more papers by this authorCorresponding Author
Prof. Quanshun Li
Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012 China
Search for more papers by this authorProf. Greg G. Qiao
Department of Chemical Engineering, University of Melbourne, Parkville, Melbourne, Victoria, 3010 Australia
Search for more papers by this authorCorresponding Author
Prof. Zesheng An
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 China
Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012 China
Search for more papers by this authorRuoyu Li
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 China
Search for more papers by this authorShudi Zhang
Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012 China
Search for more papers by this authorCorresponding Author
Prof. Quanshun Li
Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012 China
Search for more papers by this authorProf. Greg G. Qiao
Department of Chemical Engineering, University of Melbourne, Parkville, Melbourne, Victoria, 3010 Australia
Search for more papers by this authorCorresponding Author
Prof. Zesheng An
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 China
Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012 China
Search for more papers by this authorAbstract
High-throughput synthesis of well-defined, ultrahigh molecular weight (UHMW) polymers by green approaches is highly desirable but remains unexplored. We report the creation of an atom-economic enzymatic cascade catalysis, consisting of formate oxidase (FOx) and horseradish peroxidase (HRP), that enables high-throughput reversible addition-fragmentation chain transfer (RAFT) synthesis of UHMW polymers at volumes down to 50 μL. FOx transforms formic acid, a C1 substrate, and oxygen to CO2 and H2O2, respectively. CO2 can escape from solution while H2O2 is harnessed in situ by HRP to generate radicals from acetylacetone for RAFT polymerization, leaving no waste accumulation in solution. Oxygen-tolerant RAFT polymerization using enzymatic cascade redox cycles was successfully performed in vials and 96-well plates to produce libraries of well-defined UHMW polymers, and represents the first example of high-throughput synthesis method of such materials at extremely low volumes.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202213396-sup-0001-misc_information.pdf23 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. An, ACS Macro Lett. 2020, 9, 350–357.
- 2
- 2aS. Allison-Logan, F. Karimi, Y. Sun, T. G. McKenzie, M. D. Nothling, G. Bryant, G. G. Qiao, ACS Macro Lett. 2019, 8, 1291–1295;
- 2bR. N. Carmean, T. E. Becker, M. B. Sims, B. S. Sumerlin, Chem 2017, 2, 93–101;
- 2cR. N. Carmean, M. B. Sims, C. A. Figg, P. J. Hurst, J. P. Patterson, B. S. Sumerlin, ACS Macro Lett. 2020, 9, 613–618;
- 2dV. H. Dao, N. R. Cameron, K. Saito, Macromolecules 2019, 52, 7613–7624;
- 2eH. Gong, Y. Gu, Y. Zhao, Q. Quan, S. Han, M. Chen, Angew. Chem. Int. Ed. 2020, 59, 919–927; Angew. Chem. 2020, 132, 929–937;
- 2fZ. Liu, Y. Lv, Z. An, Angew. Chem. Int. Ed. 2017, 56, 13852–13856; Angew. Chem. 2017, 129, 14040–14044;
- 2gJ. K. D. Mapas, T. Thomay, A. N. Cartwright, J. Ilavsky, J. Rzayev, Macromolecules 2016, 49, 3733–3738;
- 2hR. Nicolaÿ, Y. Kwak, K. Matyjaszewski, Angew. Chem. Int. Ed. 2010, 49, 541–544; Angew. Chem. 2010, 122, 551–554;
- 2iV. Percec, T. Guliashvili, J. S. Ladislaw, A. Wistrand, A. Stjerndahl, M. J. Sienkowska, M. J. Monteiro, S. Sahoo, J. Am. Chem. Soc. 2006, 128, 14156–14165;
- 2jE. Read, A. Guinaudeau, D. James Wilson, A. Cadix, F. Violleau, M. Destarac, Polym. Chem. 2014, 5, 2202–2207;
- 2kA. Reyhani, S. Allison-Logan, H. Ranji-Burachaloo, T. G. McKenzie, G. Bryant, G. G. Qiao, J. Polym. Sci. Part A 2019, 57, 1922–1930;
- 2lJ. Rzayev, J. Penelle, Angew. Chem. Int. Ed. 2004, 43, 1691–1694; Angew. Chem. 2004, 116, 1723–1726;
- 2mY. Wang, Q. Wang, X. Pan, Cell Rep. Phys. Sci. 2020, 1, 100073.
- 3
- 3aS. Oliver, L. Zhao, A. J. Gormley, R. Chapman, C. Boyer, Macromolecules 2019, 52, 3–23;
- 3bF. Soheilmoghaddam, M. Rumble, J. Cooper-White, Chem. Rev. 2021, 121, 10792–10864.
- 4
- 4aJ. Yeow, R. Chapman, A. J. Gormley, C. Boyer, Chem. Soc. Rev. 2018, 47, 4357–4387;
- 4bN. Li, X.-C. Pan, Chin. J. Polym. Sci. 2021, 39, 1084–1092;
- 4cE. Liarou, R. Whitfield, A. Anastasaki, N. G. Engelis, G. R. Jones, K. Velonia, D. M. Haddleton, Angew. Chem. Int. Ed. 2018, 57, 8998–9002; Angew. Chem. 2018, 130, 9136–9140;
- 4dO. R. Wilson, A. J. D. Magenau, ACS Macro Lett. 2018, 7, 370–375;
- 4eC. Lv, C. He, X. Pan, Angew. Chem. Int. Ed. 2018, 57, 9430–9433; Angew. Chem. 2018, 130, 9574–9577;
- 4fM. Fromel, E. M. Benetti, C. W. Pester, ACS Macro Lett. 2022, 11, 415–421.
- 5R. Chapman, A. J. Gormley, M. H. Stenzel, M. M. Stevens, Angew. Chem. Int. Ed. 2016, 55, 4500–4503; Angew. Chem. 2016, 128, 4576–4579.
- 6
- 6aJ. Tan, D. Liu, Y. Bai, C. Huang, X. Li, J. He, Q. Xu, L. Zhang, Macromolecules 2017, 50, 5798–5806;
- 6bE. J. Cornel, J. Jiang, S. Chen, J. Du, CCS Chem. 2021, 3, 2104–2125;
- 6cF. Lv, Z. An, P. Wu, CCS Chem. 2021, 3, 2211–2222;
- 6dW.-B. Cai, D.-D. Liu, Y. Chen, L. Zhang, J.-B. Tan, Chin. J. Polym. Sci. 2021, 39, 1127–1137.
- 7
- 7aA. J. Gormley, J. Yeow, G. Ng, Ó. Conway, C. Boyer, R. Chapman, Angew. Chem. Int. Ed. 2018, 57, 1557–1562; Angew. Chem. 2018, 130, 1573–1578;
- 7bZ. Li, S. Kosuri, H. Foster, J. Cohen, C. Jumeaux, M. M. Stevens, R. Chapman, A. J. Gormley, J. Am. Chem. Soc. 2019, 141, 19823–19830;
- 7cP. R. Judzewitsch, N. Corrigan, F. Trujillo, J. Xu, G. Moad, C. J. Hawker, E. H. H. Wong, C. Boyer, Macromolecules 2020, 53, 631–639;
- 7dP. R. Judzewitsch, L. Zhao, E. H. H. Wong, C. Boyer, Macromolecules 2019, 52, 3975–3986;
- 7eG. Ng, J. Yeow, R. Chapman, N. Isahak, E. Wolvetang, J. J. Cooper-White, C. Boyer, Macromolecules 2018, 51, 7600–7607;
- 7fC. Stubbs, T. Congdon, J. Davis, D. Lester, S.-J. Richards, M. I. Gibson, Macromolecules 2019, 52, 7603–7612;
- 7gR. Upadhya, N. S. Murthy, C. L. Hoop, S. Kosuri, V. Nanda, J. Kohn, J. Baum, A. J. Gormley, Macromolecules 2019, 52, 8295–8304;
- 7hZ.-R. Zhong, Y.-N. Chen, Y. Zhou, M. Chen, Chin. J. Polym. Sci. 2021, 39, 1069–1083.
- 8
- 8aK. J. Rodriguez, B. Gajewska, J. Pollard, M. M. Pellizzoni, C. Fodor, N. Bruns, ACS Macro Lett. 2018, 7, 1111–1119;
- 8bR. Li, W. Kong, Z. An, Angew. Chem. Int. Ed. 2022, 61, e202202033; Angew. Chem. 2022, 134, e202202033.
- 9
- 9aR. Chapman, A. J. Gormley, K.-L. Herpoldt, M. M. Stevens, Macromolecules 2014, 47, 8541–8547;
- 9bA. E. Enciso, L. Fu, A. J. Russell, K. Matyjaszewski, Angew. Chem. Int. Ed. 2018, 57, 933–936; Angew. Chem. 2018, 130, 945–948;
- 9cD. K. Schneiderman, J. M. Ting, A. A. Purchel, R. Miranda, M. V. Tirrell, T. M. Reineke, S. J. Rowan, ACS Macro Lett. 2018, 7, 406–411;
- 9dY. Wang, L. Fu, K. Matyjaszewski, ACS Macro Lett. 2018, 7, 1317–1321.
- 10
- 10aY.-H. Ng, F. di Lena, C. L. L. Chai, Chem. Commun. 2011, 47, 6464–6466;
- 10bS. J. Sigg, F. Seidi, K. Renggli, T. B. Silva, G. Kali, N. Bruns, Macromol. Rapid Commun. 2011, 32, 1710–1715;
- 10cT. B. Silva, M. Spulber, M. K. Kocik, F. Seidi, H. Charan, M. Rother, S. J. Sigg, K. Renggli, G. Kali, N. Bruns, Biomacromolecules 2013, 14, 2703–2712;
- 10dB. Zhang, X. Wang, A. Zhu, K. Ma, Y. Lv, X. Wang, Z. An, Macromolecules 2015, 48, 7792–7802;
- 10eA. P. Danielson, D. B. Van Kuren, M. E. Lucius, K. Makaroff, C. Williams, R. C. Page, J. A. Berberich, D. Konkolewicz, Macromol. Rapid Commun. 2016, 37, 362–367;
- 10fC. Fodor, B. Gajewska, O. Rifaie-Graham, E. A. Apebende, J. Pollard, N. Bruns, Polym. Chem. 2016, 7, 6617–6625;
- 10gY. Lv, Z. Liu, A. Zhu, Z. An, J. Polym. Sci. Part A 2017, 55, 164–174;
- 10hA. E. Enciso, L. Fu, S. Lathwal, M. Olszewski, Z. Wang, S. R. Das, A. J. Russell, K. Matyjaszewski, Angew. Chem. Int. Ed. 2018, 57, 16157–16161; Angew. Chem. 2018, 130, 16389–16393;
- 10iZ. Liu, Y. Lv, A. Zhu, Z. An, ACS Macro Lett. 2018, 7, 1–6;
- 10jA. Reyhani, M. D. Nothling, H. Ranji-Burachaloo, T. G. McKenzie, Q. Fu, S. Tan, G. Bryant, G. G. Qiao, Angew. Chem. Int. Ed. 2018, 57, 10288–10292; Angew. Chem. 2018, 130, 10445–10449;
- 10kF. Zhou, R. Li, X. Wang, S. Du, Z. An, Angew. Chem. Int. Ed. 2019, 58, 9479–9484; Angew. Chem. 2019, 131, 9579–9584;
- 10lB. Yuan, T. Huang, X. Wang, Y. Ding, L. Jiang, Y. Zhang, J. Tang, Macromol. Rapid Commun. 2022, 43, 2100559;
- 10mA. P. Danielson, D. B. Van-Kuren, J. P. Bornstein, C. T. Kozuszek, J. A. Berberich, R. C. Page, D. Konkolewicz, Polymer 2018, 10, 741.
- 11
- 11aR. Li, Z. An, Angew. Chem. Int. Ed. 2020, 59, 22258–22264; Angew. Chem. 2020, 132, 22442–22448;
- 11bR.-Y. Li, Z.-S. An, Chin. J. Polym. Sci. 2021, 39, 1138–1145.
- 12T. Kondo, Y. Morikawa, N. Hayashi, N. Kitamoto, FEMS Microbiol. Lett. 2002, 214, 137–142.
- 13
- 13aJ. M. Robbins, J. Geng, B. A. Barry, G. Gadda, A. S. Bommarius, Biochemistry 2018, 57, 5818–5826;
- 13bF. Tieves, S. J.-P. Willot, M. M. C. H. van Schie, M. C. R. Rauch, S. H. H. Younes, W. Zhang, J. Dong, P. Gomez de Santos, J. M. Robbins, B. Bommarius, M. Alcalde, A. S. Bommarius, F. Hollmann, Angew. Chem. Int. Ed. 2019, 58, 7873–7877; Angew. Chem. 2019, 131, 7955–7959.
- 14M. Rolland, R. Whitfield, D. Messmer, K. Parkatzidis, N. P. Truong, A. Anastasaki, ACS Macro Lett. 2019, 8, 1546–1551.
- 15İ. Gulcin, Arch. Toxicol. 2020, 94, 651–715.
- 16N. C. Veitch, Phytochemistry 2004, 65, 249–259.
- 17Y. Maeda, D. Doubayashi, M. Oki, H. Nose, A. Sakurai, K. Isa, Y. Fujii, H. Uchida, Biosci. Biotechnol. Biochem. 2009, 73, 2645–2649.
- 18S. Perrier, Macromolecules 2017, 50, 7433–7447.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.