Highly Luminescent One-Dimensional Organic–Inorganic Hybrid Double-Perovskite-Inspired Materials for Single-Component Warm White-Light-Emitting Diodes
Tianxin Bai
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorXiaochen Wang
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorZhongyi Wang
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorSujun Ji
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorXuan Meng
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorQiujie Wang
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorRuiling Zhang
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorPeigeng Han
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorProf. Dr. Ke-li Han
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of Sciences, Beijing, 100049 P. R. China
Deceased (17 March 2022)
Search for more papers by this authorDr. Junsheng Chen
Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
Search for more papers by this authorCorresponding Author
Feng Liu
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorCorresponding Author
Bin Yang
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorTianxin Bai
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorXiaochen Wang
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorZhongyi Wang
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorSujun Ji
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorXuan Meng
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorQiujie Wang
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorRuiling Zhang
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorPeigeng Han
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorProf. Dr. Ke-li Han
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of Sciences, Beijing, 100049 P. R. China
Deceased (17 March 2022)
Search for more papers by this authorDr. Junsheng Chen
Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
Search for more papers by this authorCorresponding Author
Feng Liu
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorCorresponding Author
Bin Yang
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorAbstract
Double perovskites (DPs) are one of the most promising candidates for developing white light-emitting diodes (WLEDs) owing to their intrinsic broadband emission from self-trapped excitons (STEs). Translation of three-dimensional (3D) DPs to one-dimensional (1D) analogues, which could break the octahedral tolerance factor limit, is so far remaining unexplored. Herein, by employing a fluorinated organic cation, we report a series of highly luminescent 1D DP-inspired materials, (DFPD)2MIInBr6 (DFPD=4,4-difluoropiperidinium, MI=K+ and Rb+). Highly efficient warm-white photoluminescence quantum yield of 92 % is achieved by doping 0.3 % Sb3+ in (DFPD)2KInBr6. Furthermore, single-component warm-WLEDs fabricated with (DFPD)2KInBr6:Sb yield a luminance of 300 cd/m2, which is one of the best-performing lead-free metal-halides WLEDs reported so far. Our study expands the scope of In-based metal-halides from 3D to 1D, which exhibit superior optical performances and broad application prospects.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202213240-sup-0001-cif.rar1.8 MB | Supporting Information |
ange202213240-sup-0001-misc_information.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. A. Muscarella, E. M. Hutter, ACS Energy Lett. 2022, 7, 2128–2135;
- 1bB. Martín-García, D. Spirito, M. L. Lin, Y. C. Leng, S. Artyukhin, P. H. Tan, R. Krahne, Adv. Opt. Mater. 2022, 10, 2200240;
- 1cN. R. Wolf, B. A. Connor, A. H. Slavney, H. I. Karunadasa, Angew. Chem. Int. Ed. 2021, 60, 16264–16278; Angew. Chem. 2021, 133, 16400–16414.
- 2
- 2aJ. Luo, X. Wang, S. Li, J. Liu, Y. Guo, G. Niu, L. Yao, Y. Fu, L. Gao, Q. Dong, C. Zhao, M. Leng, F. Ma, W. Liang, L. Wang, S. Jin, J. Han, L. Zhang, J. Etheridge, J. Wang, Y. Yan, E. H. Sargent, J. Tang, Nature 2018, 563, 541–545;
- 2bY. Zhang, Z. Zhang, W. Yu, Y. He, Z. Chen, L. Xiao, J. j Shi, X. Guo, S. Wang, B. Qu, Adv. Sci. 2022, 9, 2102895.
- 3
- 3aB. Yang, X. Mao, F. Hong, W. Meng, Y. Tang, X. Xia, S. Yang, W. Deng, K. Han, J. Am. Chem. Soc. 2018, 140, 17001–17006;
- 3bP. Han, X. Mao, S. Yang, F. Zhang, B. Yang, D. Wei, W. Deng, K. Han, Angew. Chem. Int. Ed. 2019, 58, 17231–17235; Angew. Chem. 2019, 131, 17391–17395;
- 3cY. Liu, Y. Jing, J. Zhao, Q. Liu, Z. Xia, Chem. Mater. 2019, 31, 3333–3339.
- 4
- 4aD. Zhu, M. L. Zaffalon, J. Zito, F. Cova, F. Meinardi, L. De Trizio, I. Infante, S. Brovelli, L. Manna, ACS Energy Lett. 2021, 6, 2283–2292;
- 4bR. Zeng, L. Zhang, Y. Xue, B. Ke, Z. Zhao, D. Huang, Q. Wei, W. Zhou, B. Zou, J. Phys. Chem. Lett. 2020, 11, 2053–2061;
- 4cB. Zhou, Z. Liu, S. Fang, H. Zhong, B. Tian, Y. Wang, H. Li, H. Hu, Y. Shi, ACS Energy Lett. 2021, 6, 3343–3351;
- 4dM. B. Gray, S. Hariyani, T. A. Strom, J. D. Majher, J. Brgoch, P. M. Woodward, J. Mater. Chem. C 2020, 8, 6797–6803;
- 4eA. Noculak, V. Morad, K. M. McCall, S. Yakunin, Y. Shynkarenko, M. Worle, M. V. Kovalenko, Chem. Mater. 2020, 32, 5118–5124.
- 5
- 5aP. Vishnoi, J. L. Zuo, X. Li, D. C. Binwal, K. E. Wyckoff, L. Mao, L. Kautzsch, G. Wu, S. D. Wilson, M. G. Kanatzidis, R. Seshadri, A. K. Cheetham, J. Am. Chem. Soc. 2022, 144, 6661–6666;
- 5bS. Han, M. Li, Y. Liu, W. Guo, M. C. Hong, Z. Sun, J. Luo, Nat. Commun. 2021, 12, 284;
- 5cC. Shi, L. Ye, Z. X. Gong, J. J. Ma, Q. W. Wang, J. Y. Jiang, M. M. Hua, C. F. Wang, H. Yu, Y. Zhang, H. Y. Ye, J. Am. Chem. Soc. 2020, 142, 545–551;
- 5dY. Zhang, X. Liu, H. Sun, J. Zhang, X. Gao, C. Yang, Q. Li, H. Jiang, J. Wang, D. Xu, Angew. Chem. Int. Ed. 2021, 60, 7587–7592.
- 6
- 6aC.-F. Wang, H. Li, M.-G. Li, Y. Cui, X. Song, Q.-W. Wang, J.-Y. Jiang, M.-M. Hua, Q. Xu, K. Zhao, H.-Y. Ye, Y. Zhang, Adv. Funct. Mater. 2021, 31, 2009457;
- 6bH.-Y. Zhang, X.-J. Song, X.-G. Chen, Z.-X. Zhang, Y.-M. You, Y.-Y. Tang, R.-G. Xiong, J. Am. Chem. Soc. 2020, 142, 4925–4931;
- 6cC. F. Wang, H. Li, Q. Ji, C. Ma, L. Liu, H. Y. Ye, B. Cao, G. Yuan, H. F. Lu, D. W. Fu, M. G. Ju, J. Wang, K. Zhao, Y. Zhang, Adv. Funct. Mater. 2022, 32, 2205918.
- 7Z. Xiao, W. Meng, J. Wang, D. B. Mitzi, Y. Yan, Mater. Horiz. 2017, 4, 206–216.
- 8Y. Yuan, Y. Xian, Y. Long, Y. Zhang, N. U. Rahman, Y. Zhang, J. Fan, W. Li, RSC Adv. 2021, 11, 24816–24821.
- 9
- 9aZ. Chu, X. Chu, Y. Zhao, Q. Ye, J. Jiang, X. Zhang, J. You, Small Struct. 2021, 2, 2000133;
- 9bY. Han, S. Yue, B. B. Cui, Adv. Sci. 2021, 8, 2004805.
- 10Deposition numbers 2213690((DFPD)4AgInBr8 ⋅ H2O), 2213691 (150 K-(DFPD)2KInBr6), 2213692 (300 K-(DFPD)2KInBr6), 2213693 ((DFPD)2KInCl6), 2213694 ((DFPD)2RbInBr6), 2213695 ((DFPD)2CsInBr6), and 2213696 ((DFPD)4InBr7) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 11
- 11aQ. Mo, J. Yu, C. Chen, W. Cai, S. Zhao, H. Li, Z. Zang, Laser Photonics Rev. 2022, 16, 2100600;
- 11bB. Li, J. Jin, M. Yin, X. Zhang, M. Molokeev, Z. Xia, Y. Xu, Angew. Chem. Int. Ed. 2022, 61, e202212741.
- 12B. Zhou, Z. Liu, S. Fang, J. Nie, H. Zhong, H. Hu, H. Li, Y. Shi, J. Phys. Chem. Lett. 2022, 13, 9140–9147.
- 13
- 13aZ. Fang, H. He, L. Gan, J. Li, Z. Ye, Adv. Sci. 2018, 5, 1800736;
- 13bL. Lian, X. Wang, P. Zhang, J. Zhu, X. Zhang, J. Gao, S. Wang, G. Liang, D. Zhang, L. Gao, H. Song, R. Chen, X. Lan, W. Liang, G. Niu, J. Tang, J. Zhang, J. Phys. Chem. Lett. 2021, 12, 6919–6926.
- 14
- 14aX. Peng, Q. Wei, A. Copple, Phys. Rev. B 2014, 90, 085402;
- 14bH. Xiao, J. Tahir-Kheli, W. A. Goddard, J. Phys. Chem. Lett. 2011, 2, 212–217.
- 15
- 15aS. Li, J. Luo, J. Liu, J. Tang, J. Phys. Chem. Lett. 2019, 10, 1999–2007;
- 15bZ. Xiao, Z. Song, Y. Yan, Adv. Mater. 2019, 31, 1803792.
- 16
- 16aX. Zhang, C. Wang, Y. Zhang, X. Zhang, S. Wang, M. Lu, H. Cui, S. V. Kershaw, W. W. Yu, A. L. Rogach, ACS Energy Lett. 2019, 4, 242–248;
- 16bC. Tang, X. Shen, X. Wu, Y. Zhong, J. Hu, M. Lu, Z. Wu, Y. Zhang, W. W. Yu, X. Bai, J. Phys. Chem. Lett. 2021, 12, 10112–10119;
- 16cM. D. Ho, D. Kim, N. Kim, S. M. Cho, H. Chae, ACS Appl. Mater. Interfaces 2013, 5, 12369–12374.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.