Cooperative Catalyst-Enabled Regio- and Stereodivergent Synthesis of α-Quaternary α-Amino Acids via Asymmetric Allylic Alkylation of Aldimine Esters with Racemic Allylic Alcohols
Lu Xiao
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021 China
These authors contributed equally to this work.
Search for more papers by this authorXin Chang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
These authors contributed equally to this work.
Search for more papers by this authorHui Xu
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072 China
These authors contributed equally to this work.
Search for more papers by this authorQi Xiong
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yanfeng Dang
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chun-Jiang Wang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021 China
Search for more papers by this authorLu Xiao
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021 China
These authors contributed equally to this work.
Search for more papers by this authorXin Chang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
These authors contributed equally to this work.
Search for more papers by this authorHui Xu
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072 China
These authors contributed equally to this work.
Search for more papers by this authorQi Xiong
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yanfeng Dang
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chun-Jiang Wang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021 China
Search for more papers by this authorAbstract
We describe cooperative bimetallic catalysis that enables regio-/stereodivergent asymmetric α-allylations of aldimine esters. By employing Et3B as the key activator, racemic allylic alcohols can be directly ionized to form Pd or Ir-π-allyl species in the presence of achiral Pd or chiral Ir complexes, respectively. The less or more substituted allylic termini of the metal-π-allyl species are amenable to nucleophilic attack by the chiral Cu-azomethine ylide, the formation of which is simultaneously facilitated by Et3B, affording α-quaternary α-amino acids with high regioselectivity and excellent stereoselectivity. The use of readily available allylic alcohols as electrophilic precursors represents an improvement from an environmental and atom/step economy perspective. Computational mechanistic studies reveal the crucial role of the Et3B additive and the origins of stereo- and regioselectivities by analyzing steric effects, dispersion interactions, and frontier orbital population.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202212948-sup-0001-misc_information.pdf43 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. B. Hughes, Amino Acids, Peptides and Proteins in Organic Chemistry; Wiley, Hoboken, 2009.
- 2
- 2aP. W. Schiller, G. Weltrowska, D. Nguyen Thi Mai, C. Lemieux, N. N. Chung, B. J. Marsden, B. C. Wilkes, J. Med. Chem. 1991, 34, 3125;
- 2bB. Bellier, I. McCort-Tranchepain, B. Ducos, S. Danascimento, H. Meudal, F. Noble, C. Garbay, B. P. Roques, J. Med. Chem. 1997, 40, 3947.
- 3
- 3aG. Fenteany, R. F. Standaert, W. S. Lane, S. Choi, E. J. Corey, S. L. Schreiber, Science 1995, 268, 726;
- 3bA. S. Kende, K. Liu, K. M. Jos Brands, J. Am. Chem. Soc. 1995, 117, 10597.
- 4
- 4aY. Ohfune, T. Shinada, Eur. J. Org. Chem. 2005, 5127;
- 4bA. F. M. Noisier, M. A. Brimble, Chem. Rev. 2014, 114, 8775.
- 5
- 5aM. J. O′Donnell, F. Delgado, C. Hostettler, R. Schwesinger, Tetrahedron Lett. 1998, 39, 8775;
- 5bJ. Wang, X. Hu, J. Jiang, S. Gou, X. Huang, X. Liu, X. Feng, Angew. Chem. Int. Ed. 2007, 46, 8468; Angew. Chem. 2007, 119, 8620;
- 5cR. He, X. Wang, T. Hashimoto, K. Maruoka, Angew. Chem. Int. Ed. 2008, 47, 9466; Angew. Chem. 2008, 120, 9608;
- 5dB. M. Trost, L. C. Czabaniuk, J. Am. Chem. Soc. 2012, 134, 5778.
- 6
- 6aZ. Lu, S. Ma, Angew. Chem. Int. Ed. 2008, 47, 258; Angew. Chem. 2008, 120, 264;
- 6bJ. D. Weaver, A. Recio, A. J. Grenning, J. A. Tunge, Chem. Rev. 2011, 111, 1846;
- 6cQ. Cheng, H.-F. Tu, C. Zheng, J.-P. Qu, G. Helmchen, S.-L. You, Chem. Rev. 2019, 119, 1855.
- 7For reviews on synergistic catalysis, see:
- 7aZ. Du, Z. Shao, Chem. Soc. Rev. 2013, 42, 1337;
- 7bD.-F. Chen, Z.-Y. Han, X.-L. Zhou, L.-Z. Gong, Acc. Chem. Res. 2014, 47, 2365;
- 7cS. M. Inamdar, V. S. Shinde, N. T. Patil, Org. Biomol. Chem. 2015, 13, 8116.
- 8
- 8aG. Chen, Y. Deng, L. Gong, A. Mi, X. Cui, Y. Jiang, M. C. K. Choi, A. S. C. Chan, Tetrahedron: Asymmetry 2001, 12, 1567;
- 8bM. Nakoji, T. Kanayama, T. Okino, Y. Takemoto, Org. Lett. 2001, 3, 3329; For most recent examples, see:
- 8cY. Chen, J. He, C. Zhuang, Z. Liu, K. Xiao, Z. Su, X. Ren, T. Wang, Angew. Chem. Int. Ed. 2022, 61, e202207334; Angew. Chem. 2022, 134, e202207334.
- 9
- 9aS. Krautwald, E. M. Carreira, J. Am. Chem. Soc. 2017, 139, 5627;
- 9bL. Lin, X. Feng, Chem. Eur. J. 2017, 23, 6464;
- 9cI. P. Beletskaya, C. Nájera, M. Yus, Chem. Rev. 2018, 118, 5080;
- 9dU. B. Kim, D. J. Jung, H. J. Jeon, K. Rathwell, S.-g. Lee, Chem. Rev. 2020, 120, 13382;
- 9eY. Wu, X. Huo, W. Zhang, Chem. Eur. J. 2020, 26, 4895;
- 9fL. Wei, C. J. Wang, Chin. J. Chem. 2021, 39, 15.
- 10For selected examples of stereodivergent synergistic catalysis, see:
- 10aS. Krautwald, M. A. Schafroth, D. Sarlah, E. M. Carreira, J. Am. Chem. Soc. 2014, 136, 3020;
- 10bL. Naesborg, K. S. Halskov, F. Tur, S. M. Monsted, K. A. Jørgensen, Angew. Chem. Int. Ed. 2015, 54, 10193; Angew. Chem. 2015, 127, 10331;
- 10cT. Sandmeier, S. Krautwald, H. F. Zipfel, E. M. Carreira, Angew. Chem. Int. Ed. 2015, 54, 14363; Angew. Chem. 2015, 127, 14571;
- 10dX. Huo, R. He, X. Zhang, W. Zhang, J. Am. Chem. Soc. 2016, 138, 11093;
- 10eF. A. Cruz, V. M. Dong, J. Am. Chem. Soc. 2017, 139, 1029;
- 10fX. Huo, R. He, J. Fu, J. Zhang, G. Yang, W. Zhang, J. Am. Chem. Soc. 2017, 139, 9819;
- 10gX. Huo, J. Zhang, J. Fu, R. He, W. Zhang, J. Am. Chem. Soc. 2018, 140, 2080;
- 10hR. He, X. Huo, L. Zhao, F. Wang, L. Jiang, J. Liao, W. Zhang, J. Am. Chem. Soc. 2020, 142, 8097;
- 10iY. Peng, X. Huo, Y. Luo, L. Wu, W. Zhang, Angew. Chem. Int. Ed. 2021, 60, 24941; Angew. Chem. 2021, 133, 25145;
- 10jJ. Zhang, X. Huo, J. Xiao, L. Zhao, S. Ma, W. Zhang, J. Am. Chem. Soc. 2021, 143, 12622;
- 10kX. Jiang, J. J. Beiger, J. F. Hartwig, J. Am. Chem. Soc. 2017, 139, 87;
- 10lX. Jiang, P. Boehm, J. F. Hartwig, J. Am. Chem. Soc. 2018, 140, 1239;
- 10mZ.-T. He, X. Jiang, J. F. Hartwig, J. Am. Chem. Soc. 2019, 141, 13066;
- 10nM.-M. Zhang, Y.-N. Wang, B.-C. Wang, X.-W. Chen, L.-Q. Lu, W.-J. Xiao, Nat. Commun. 2019, 10, 2716;
- 10oQ. Zhang, H. Yu, L. Shen, T. Tang, D. Dong, W. Chai, W. Zi, J. Am. Chem. Soc. 2019, 141, 14554;
- 10pS. Singha, E. Serrano, S. Mondal, C. G. Daniliuc, F. Glorius, Nat. Catal. 2020, 3, 48;
- 10qH. Wang, R. Zhang, Q. Zhang, W. Zi, J. Am. Chem. Soc. 2021, 143, 10948;
- 10rM. Zhu, Q. Zhang, W. Zi, Angew. Chem. Int. Ed. 2021, 60, 6545; Angew. Chem. 2021, 133, 6619;
- 10sB. Kim, Y. Kim, S. Y. Lee, J. Am. Chem. Soc. 2021, 143, 73;
- 10tY.-H. Wen, Z.-J. Zhang, S. Li, J. Song, L.-Z. Gong, Nat. Commun. 2022, 13, 1344;
- 10uS. Q. Yang, Y. F. Wang, W. C. Zhao, G. Q. Lin, Z. T. He, J. Am. Chem. Soc. 2021, 143, 7285;
- 10vY. Xu, H. Wang, Z. Yang, Y. Zhou, Y. Liu, X. Feng, Chem 2022, 8, 2011;
- 10wX. Chang, X. Cheng, X. T. Liu, C. Fu, W. Y. Wang, C. J. Wang, Angew. Chem. Int. Ed. 2022, 61, e202206517; Angew. Chem. 2022, 134, e202206517;
- 10xR. Jiang, L. Ding, C. Zheng, S.-L. You, Science 2021, 371, 380.
- 11
- 11aH.-L. Teng, F.-L. Luo, H.-Y. Tao, C.-J. Wang, Org. Lett. 2011, 13, 5600;
- 11bZ.-Y. Xue, Q.-H. Li, H.-Y. Tao, C.-J. Wang, J. Am. Chem. Soc. 2011, 133, 11757;
- 11cH. L. Teng, H. Huang, C. J. Wang, Chem. Eur. J. 2012, 18, 12614;
- 11dZ.-Y. Xue, Z.-M. Song, C.-J. Wang, Org. Biomol. Chem. 2015, 13, 5460.
- 12
- 12aX. Fang, C.-J. Wang, Org. Biomol. Chem. 2018, 16, 2591;
- 12bL. Wei, X. Chang, C.-J. Wang, Acc. Chem. Res. 2020, 53, 1084.
- 13
- 13aL. Wei, S. M. Xu, Q. Zhu, C. Che, C. J. Wang, Angew. Chem. Int. Ed. 2017, 56, 12312; Angew. Chem. 2017, 129, 12480;
- 13bL. Wei, L. Xiao, C.-J. Wang, Adv. Synth. Catal. 2018, 360, 4715;
- 13cL. Wei, Q. Zhu, S.-M. Xu, X. Chang, C.-J. Wang, J. Am. Chem. Soc. 2018, 140, 1508;
- 13dH. C. Liu, Y. Z. Hu, Z. F. Wang, H. Y. Tao, C. J. Wang, Chem. Eur. J. 2019, 25, 8681;
- 13eL. Wei, Q. Zhu, L. Xiao, H.-Y. Tao, C.-J. Wang, Nat. Commun. 2019, 10, 1594;
- 13fS.-M. Xu, L. Wei, C. Shen, L. Xiao, H.-Y. Tao, C.-J. Wang, Nat. Commun. 2019, 10, 5553;
- 13gH.-M. Wu, Z. Zhang, F. Xiao, L. Wei, X.-Q. Dong, C.-J. Wang, Org. Lett. 2020, 22, 4852;
- 13hH.-M. Wu, Z. Zhang, L. Wei, X.-Q. Dong, C.-J. Wang, Chem. Commun. 2021, 57, 6538;
- 13iL. Xiao, L. Wei, C. J. Wang, Angew. Chem. Int. Ed. 2021, 60, 24930; Angew. Chem. 2021, 133, 25134;
- 13jX. Chang, J.-D. Ran, X.-T. Liu, C.-J. Wang, Org. Lett. 2022, 24, 2573;
- 13kL. Xiao, B. Li, F. Xiao, C. Fu, L. Wei, Y. Dang, X.-Q. Dong, C.-J. Wang, Chem. Sci. 2022, 13, 4801.
- 14
- 14aX. Huo, J. Fu, X. He, J. Chen, F. Xie, W. Zhang, Chem. Commun. 2018, 54, 599;
- 14bP. Liu, X. Huo, B. Li, R. He, J. Zhang, T. Wang, F. Xie, W. Zhang, Org. Lett. 2018, 20, 6564;
- 14cJ. Zhang, X. Huo, B. Li, Z. Chen, Y. Zou, Z. Sun, W. Zhang, Adv. Synth. Catal. 2019, 361, 1130;
- 14dT. Wang, Y. Peng, G. Li, Y. Luo, Y. Ye, X. Huo, W. Zhang, Chem. Eur. J. 2021, 27, 10255;
- 14eJ. Xiao, H. Xu, X. Huo, W. Zhang, S. Ma, Chin. J. Chem. 2021, 39, 1958;
- 14fX. H. Huo, L. Zhao, Y. C. Luo, Y. Wu, Y. W. Sun, G. L. Li, T. Gridneva, J. C. Zhang, Y. Ye, W. B. Zhang, CCS Chem. 2022, 4, 1720.
- 15
- 15aB. M. Trost, Angew. Chem. Int. Ed. Engl. 1995, 34, 259; Angew. Chem. 1995, 107, 285;
- 15bP. A. Wender, V. A. Verma, T. J. Paxton, T. H. Pillow, Acc. Chem. Res. 2008, 41, 40.
- 16N. A. Butt, W. Zhang, Chem. Soc. Rev. 2015, 44, 7929.
- 17
- 17aB. M. Trost, J. Quancard, J. Am. Chem. Soc. 2006, 128, 6314;
- 17bG. Jiang, B. List, Angew. Chem. Int. Ed. 2011, 50, 9471; Angew. Chem. 2011, 123, 9643;
- 17cZ.-L. Tao, W.-Q. Zhang, D.-F. Chen, A. Adele, L.-Z. Gong, J. Am. Chem. Soc. 2013, 135, 9255;
- 17dH. Zhou, L. Zhang, C. Xu, S. Luo, Angew. Chem. Int. Ed. 2015, 54, 12645; Angew. Chem. 2015, 127, 12836;
- 17eH. Zhou, H. Yang, M. Liu, C. Xia, G. Jiang, Org. Lett. 2014, 16, 5350;
- 17fD. Banerjee, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2014, 53, 13049; Angew. Chem. 2014, 126, 13265;
- 17gY. Yamashita, A. Gopalarathnam, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 7508.
- 18
- 18aS. L. Rössler, D. A. Petrone, E. M. Carreira, Acc. Chem. Res. 2019, 52, 2657;
- 18bX. Zhang, L. Han, S.-L. You, Chem. Sci. 2014, 5, 1059;
- 18cJ. A. Rossi-Ashton, A. K. Clarke, J. R. Donald, C. Zheng, R. J. K. Taylor, W. P. Unsworth, S. L. You, Angew. Chem. Int. Ed. 2020, 59, 7598; Angew. Chem. 2020, 132, 7668.
- 19S.-B. Tang, X. Zhang, H.-F. Tu, S.-L. You, J. Am. Chem. Soc. 2018, 140, 7737.
- 20C. Toniolo, H. Brückner, Peptaibiotics: Fungal Peptides Containing α-Dialkyl α-Amino Acids, Wiley-VCH, Weinheim, 2009.
- 21
- 21aA. H. Hoveyda, A. W. Hird, M. A. Kacprzynski, Chem. Commun. 2004, 1779;
- 21bL. V. Jose, B. Dolores, C. Luisa, R. Efraim, E. Juan, Curr. Org. Chem. 2005, 9, 219.
- 22
- 22aK. W. Hahn, W. A. Klis, J. M. Stewart, Science 1990, 248, 1544;
- 22b Drug Stereochemistry: Analytical Methods and Pharmacology, (Eds.: K. Jozwiak, W. J. Lough, I. W. Wainer), 3rd ed., New York, 2012.
10.3109/9781420092394 Google Scholar
- 23
- 23aM. Kimura, M. Futamata, R. Mukai, Y. Tamaru, J. Am. Chem. Soc. 2005, 127, 4592;
- 23bS. E. Shockley, J. C. Hethcox, B. M. Stoltz, Angew. Chem. Int. Ed. 2017, 56, 11545; Angew. Chem. 2017, 129, 11703;
- 23cJ. C. Hethcox, S. E. Shockley, B. M. Stoltz, Angew. Chem. Int. Ed. 2018, 57, 8664; Angew. Chem. 2018, 130, 8800.
- 24X. Chang, C. Che, Z.-F. Wang, C.-J. Wang, CCS Chem. 2022, 4, 1414.
- 25For control experiments and kinetic resolution studies, see Supporting Information for details.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.