Reversible Light-Controlled CO Adsorption via Tuning π-Complexation of Cu+ Sites in Azobenzene-Decorated Metal-Organic Frameworks
Dr. Yu-Xia Li
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009 China
These authors contributed equally to this work.
Search for more papers by this authorWen Zhong
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009 China
These authors contributed equally to this work.
Search for more papers by this authorJin-Jian Zhou
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009 China
Search for more papers by this authorDr. Shi-Chao Qi
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009 China
Search for more papers by this authorProf. Xiao-Qin Liu
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009 China
Search for more papers by this authorCorresponding Author
Prof. Lin-Bing Sun
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009 China
Search for more papers by this authorDr. Yu-Xia Li
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009 China
These authors contributed equally to this work.
Search for more papers by this authorWen Zhong
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009 China
These authors contributed equally to this work.
Search for more papers by this authorJin-Jian Zhou
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009 China
Search for more papers by this authorDr. Shi-Chao Qi
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009 China
Search for more papers by this authorProf. Xiao-Qin Liu
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009 China
Search for more papers by this authorCorresponding Author
Prof. Lin-Bing Sun
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009 China
Search for more papers by this authorAbstract
Light-responsive adsorbents capture significant attention due to their tailorable performance upon light irradiation. The modulation of such adsorbents is mainly based on weak (physical) interactions caused by steric hindrance while tuning strong interaction with target adsorbates is scarce. Here we report smart π-complexation adsorbents, which can adjust the π-complexation of active sites via light irradiation. A typical metal-organic framework, MIL-101-NH2, was decorated with azobenzene motifs, and Cu+ as π-complexation active sites were introduced subsequently. The reversible light-induced isomerization of azobenzene regulates the surface electrostatic potentials around Cu+ from −0.038 to 0.008 eV, causing shielding and exposure effects. The alteration of CO uptake is achieved up to 54 % via changing light, while that on MIL-101-NH2 is negligible. This study provides a clue for designing target-specific smart materials to meet the practical stimuli-responsive adsorption demands.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202212732-sup-0001-misc_information.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Bai, X. Song, W. Yan, J. Yu, Natl. Sci. Rev. 2022, nwac064, https://doi.org/10.1093/nsr/nwac064.
- 2
- 2aP. G. Boyd, A. Chidambaram, E. Garcia-Diez, C. P. Ireland, T. D. Daff, R. Bounds, A. Gladysiak, P. Schouwink, S. M. Moosavi, M. M. Maroto-Valer, J. A. Reimer, J. A. R. Navarro, T. K. Woo, S. Garcia, K. C. Stylianou, B. Smit, Nature 2019, 576, 253–256;
- 2bY. Zhou, J. L. Zhang, L. Wang, X. L. Cui, X. L. Liu, S. S. Wong, H. An, N. Yan, J. Y. Xie, C. Yu, P. X. Zhang, Y. H. Du, S. B. Xi, L. R. Zheng, X. Z. Cao, Y. J. Wu, Y. X. Wang, C. Q. Wang, H. M. Wen, L. Chen, H. B. Xing, J. Wang, Science 2021, 373, 315–320.
- 3
- 3aP. Q. Liao, N. Y. Huang, W. X. Zhang, J. P. Zhang, X. M. Chen, Science 2017, 356, 1193–1196;
- 3bY.-F. Yuan, Y.-S. Wang, X.-L. Zhang, W.-C. Li, G.-P. Hao, L. Han, A.-H. Lu, Angew. Chem. Int. Ed. 2021, 60, 19063–19067; Angew. Chem. 2021, 133, 19211–19215.
- 4J. Y. S. Lin, Science 2016, 353, 121–122.
- 5
- 5aQ.-R. Wu, P. Tan, C. Gu, R. Zhou, S.-C. Qi, X.-Q. Liu, Y. Jiang, L.-B. Sun, Sci. China Mater. 2021, 64, 383–392;
- 5bS. Mura, J. Nicolas, P. Couvreur, Nat. Mater. 2013, 12, 991–1003;
- 5cS. Krause, J. D. Evans, V. Bon, S. Crespi, W. Danowski, W. R. Browne, S. Ehrling, F. Walenszus, D. Wallacher, N. Grimm, D. M. Többens, M. S. Weiss, S. Kaskel, B. L. Feringa, Nat. Commun. 2022, 13, 1951;
- 5dR. Lyndon, K. Konstas, R. A. Evans, D. J. Keddie, M. R. Hill, B. P. Ladewig, Adv. Funct. Mater. 2015, 25, 4405–4411;
- 5eH. Huang, H. Sato, T. Aida, J. Am. Chem. Soc. 2017, 139, 8784–8787;
- 5fN. Sun, C. Wang, B. Yu, H. Wang, L. J. Barbour, J. Jiang, ACS Appl. Mater. Interfaces 2022, 14, 1519–1525;
- 5gR. Ou, H. Zhang, C. Zhao, H. M. Hegab, L. Jiang, V. X. Truong, H. Wang, Chem. Mater. 2020, 32, 10621–10627.
- 6
- 6aT. Senthilkumar, L. Y. Zhou, Q. Gu, L. B. Liu, F. T. Lv, S. Wang, Angew. Chem. Int. Ed. 2018, 57, 13114–13119; Angew. Chem. 2018, 130, 13298–13303;
- 6bY. Jiang, P. Tan, S. C. Qi, X. Q. Liu, J. H. Yan, F. Fan, L. B. Sun, Angew. Chem. Int. Ed. 2019, 58, 6600–6604; Angew. Chem. 2019, 131, 6672–6676;
- 6cR. Haldar, L. Heinke, C. Wöll, Adv. Mater. 2020, 32, 1905227;
- 6dH. A. Schwartz, U. Ruschewitz, L. Heinke, Photochem. Photobiol. Sci. 2018, 17, 864–873;
- 6eA. Goulet-Hanssens, F. Eisenreich, S. Hecht, Adv. Mater. 2020, 32, 1905966.
- 7
- 7aN. Yanai, T. Uemura, M. Inoue, R. Matsuda, T. Fukushima, M. Tsujimoto, S. Isoda, S. Kitagawa, J. Am. Chem. Soc. 2012, 134, 4501–4504;
- 7bT. Y. Qian, H. C. Zhang, X. Y. Li, J. Hou, C. Zhao, Q. F. Gu, H. T. Wang, Angew. Chem. Int. Ed. 2020, 59, 13051–13056; Angew. Chem. 2020, 132, 13151–13156;
- 7cG. Das, T. Prakasam, M. A. Addicoat, S. K. Sharma, F. Ravaux, R. Mathew, M. Baias, R. Jagannathan, M. A. Olson, A. Trabolsi, J. Am. Chem. Soc. 2019, 141, 19078–19087.
- 8
- 8aW. Danowski, T. van Leeuwen, W. R. Browne, B. L. Feringa, Nanoscale Adv. 2021, 3, 24–40;
- 8bA. M. Rice, C. R. Martin, V. A. Galitskiy, A. A. Berseneva, G. A. Leith, N. B. Shustova, Chem. Rev. 2020, 120, 8790–8813.
- 9
- 9aA. Díaz-Moscoso, P. Ballester, Chem. Commun. 2017, 53, 4635–4652;
- 9bR. Lyndon, K. Konstas, B. P. Ladewig, P. D. Southon, P. C. J. Kepert, M. R. Hill, Angew. Chem. Int. Ed. 2013, 52, 3695–3698; Angew. Chem. 2013, 125, 3783–3786;
- 9cD. G. Patel, I. M. Walton, J. M. Cox, C. J. Gleason, D. R. Butzer, J. B. Benedict, Chem. Commun. 2014, 50, 2653–2656;
- 9dA. B. Kanj, J. Burck, S. Grosjean, S. Brase, L. Heinke, Chem. Commun. 2019, 55, 8776–8779.
- 10
- 10aS. Angelos, M. Liong, E. Choi, J. I. Zink, Chem. Eng. J. 2008, 137, 4–13;
- 10bL. Cheng, Y. Jiang, N. Yan, S.-F. Shan, X.-Q. Liu, L.-B. Sun, ACS Appl. Mater. Interfaces 2016, 8, 23404–23411;
- 10cD. Mutruc, A. Goulet-Hanssens, S. Fairman, S. Wahl, A. Zimathies, C. Knie, S. Hecht, Angew. Chem. Int. Ed. 2019, 58, 12862–12867; Angew. Chem. 2019, 131, 12994–12999.
- 11
- 11aJ. Park, D. Yuan, K. T. Pham, J.-R. Li, A. Yakovenko, H.-C. Zhou, J. Am. Chem. Soc. 2012, 134, 99–102;
- 11bN. Prasetya, B. P. Ladewig, Sci. Rep. 2017, 7, 13355;
- 11cH. Li, M. R. Martinez, Z. Perry, H. C. Zhou, P. Falcaro, C. Doblin, S. Lim, A. J. Hill, B. Halstead, M. R. Hill, Chem. Eur. J. 2016, 22, 11176–11179.
- 12
- 12aN. A. Khan, C. M. Kim, S. H. Jhung, Chem. Eng. J. 2017, 311, 20–27;
- 12bY.-X. Li, J.-X. Shen, S.-S. Peng, J.-K. Zhang, J. Wu, X.-Q. Liu, L.-B. Sun, Nat. Commun. 2020, 11, 3206.
- 13S. Salehi, M. Hosseinifard, Chem. Eng. J. 2021, 410, 128315.
- 14A. Modrow, D. Zargarani, R. Herges, N. Stock, Dalton Trans. 2012, 41, 8690–8696.
- 15B. Özden, A. T. Florence, Eur. Polym. J. 1995, 31, 135–144.
- 16D. Jiang, L. L. Keenan, A. D. Burrows, K. J. Edler, Chem. Commun. 2012, 48, 12053–12055.
- 17J. W. Yoon, T.-U. Yoon, E.-J. Kim, A.-R. Kim, T.-S. Jung, S.-S. Han, Y.-S. Bae, J. Hazard. Mater. 2018, 341, 321–327.
- 18
- 18aM. Anbia, V. Hoseini, Chem. Eng. J. 2012, 191, 326–330;
- 18bM. Hartmann, M. Fischer, Microporous Mesoporous Mater. 2012, 164, 38–43.
- 19J. W. Brown, B. L. Henderson, M. D. Kiesz, A. C. Whalley, W. Morris, S. Grunder, H. Deng, H. Furukawa, J. I. Zink, J. F. Stoddart, O. M. Yaghi, Chem. Sci. 2013, 4, 2858–2864.
- 20
- 20aA. S. Kumar, T. Ye, T. Takami, B.-C. Yu, A. K. Flatt, J. M. Tour, P. S. Weiss, Nano Lett. 2008, 8, 1644–1648;
- 20bA. A. Beharry, G. A. Woolley, Chem. Soc. Rev. 2011, 40, 4422–4437.
- 21
- 21aA. Manna, P. L. Chen, H. Akiyama, T. X. Wei, K. Tamada, W. Knoll, Chem. Mater. 2003, 15, 20–28;
- 21bD. T. Valley, M. Onstott, S. Malyk, A. V. Benderskii, Langmuir 2013, 29, 11623–11631.
- 22
- 22aY. Zhu, W. Zhang, Chem. Sci. 2014, 5, 4957–4961;
- 22bP. Tan, Y. Jiang, S.-C. Qi, X.-J. Gao, X.-Q. Liu, L.-B. Sun, Engineering 2020, 6, 569–576.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.