Facilitating Molecular Activation and Proton Feeding by Dual Active Sites on Polymeric Carbon Nitride for Efficient CO2 Photoreduction
Xiaoqiang An
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorQingwen Tang
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHuachun Lan
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHuijuan Liu
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorXuelian Yu
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, 100083 Beijing, China
Search for more papers by this authorCorresponding Author
Jiuhui Qu
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHuiwen Lin
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
Search for more papers by this authorCorresponding Author
Jinhua Ye
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
Search for more papers by this authorXiaoqiang An
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorQingwen Tang
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHuachun Lan
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHuijuan Liu
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorXuelian Yu
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, 100083 Beijing, China
Search for more papers by this authorCorresponding Author
Jiuhui Qu
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHuiwen Lin
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
Search for more papers by this authorCorresponding Author
Jinhua Ye
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
Search for more papers by this authorAbstract
Photoreduction of CO2 provides an appealing way to alleviate the energy crisis and manage the global carbon balance but is limited by the high activation energy and the rate-limiting proton transfer. We now develop a dual-site strategy for high-efficiency CO2 conversion through polarizing CO2 molecules at pyridine N vacancies and accelerating the intermediate protonation by protonated pyridine N adjacent to nitrogen vacancies on polymeric carbon nitride. Our photocatalysts with atomic-level engineered active sites manifest a high CO production rate of 1835 μmol g−1 h−1, 183 times higher than the pristine bulk carbon nitride. Theoretical prediction and experimental studies confirm that such excellent performance is attributed to the synergistic effect between vacant and protonated pyridine N in decreasing the formation energy of the key *COOH intermediates and the efficient electron transfer relay facilitated by the defect-induced shallow trap state and homogeneous charge mediators.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202212706-sup-0001-misc_information.pdf4.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Jiang, X. Xu, Y. Ma, H. Cho, D. Ding, C. Wang, J. Wu, P. Oleynikov, M. Jia, J. Cheng, Y. Zhou, O. Terasaki, T. Peng, L. Zan, H. Deng, Nature 2020, 586, 549–554.
- 2Y. Birdja, E. Pérez-Gallent, M. Figueiredo, A. Göttle, F. Calle-Vallejo, Ma. Koper, Nat. Energy 2019, 4, 732–745.
- 3A. Mazheika, Y. Wang, R. Valero, F. Viñes, F. Illas, L. Ghiringhelli, S. Levchenko, M. Scheffler, Nat. Commun. 2022, 13, 419.
- 4Y. Li, D. Hui, Y. Sun, Y. Wang, Z. Wu, C. Wang, J. Zhao, Nat. Commun. 2021, 12, 123.
- 5F. Franco, C. Rettenmaier, H. Jeon, B. Cuenya, Chem. Soc. Rev. 2020, 49, 6884–6946.
- 6W. Wei, Z. Wei, R. Li, Z. Li, R. Shi, S. Ouyang, Y. Qi, D. Philips, H. Yuan, Nat. Commun. 2022, 13, 3199.
- 7D. Stephan, Science 2016, 354, 7229.
- 8S. Zhang, Z. Huang, Y. Ma, W. Gao, J. Li, F. Cao, L. Li, C. Chang, Y. Qu, Nat. Commun. 2017, 8, 15266.
- 9H. Shafaat, J. Yang, Nat. Catal. 2021, 4, 928–933.
- 10W. Zhong, R. Sa, L. Li, Y. He, L. Li, J. Bi, Z. Zhuang, Y. Yu, Z. Zou, J. Am. Chem. Soc. 2019, 141, 7615–7621.
- 11X. Wang, X. Sang, C. Dong, S. Yao, L. Shuai, J. Lu, B. Yang, Z. Li, L. Lei, M. Qiu, L. Dai, Y. Hou, Angew. Chem. Int. Ed. 2021, 60, 11959–11965; Angew. Chem. 2021, 133, 12066–12072.
- 12X. Wang, L. Lu, B. Wang, Z. Xu, Z. Xin, S. Yan, Z. Geng, Z. Zou, Adv. Funct. Mater. 2018, 28, 1804191.
- 13Y. Wang, X. Liu, X. Han, R. Godin, J. Chen, W. Zhou, C. Jiang, J. Thompson, K. Mustafa, S. Shevlin, J. Durrant, Z. Guo, J. Tang, Nat. Commun. 2020, 11, 2531.
- 14S. Talapaneni, G. Singh, I. Kim, K. AlBahily, Adv. Mater. 2020, 32, 1904635.
- 15M. Liu, C. Wei, H. Zhuzhang, J. Zhou, Z. Pan, W. Lin, Z. Yu, G. Zhang, X. Wang, Angew. Chem. Int. Ed. 2022, 61, e202113389; Angew. Chem. 2022, 134, e202113389.
- 16F. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick, X. Wang, M. Bojdys, Nat. Rev. Mater. 2017, 2, 17030.
- 17Z. Pan, M. Zhao, H. Zhuzhang, G. Zhang, M. Anpo, X. Wang, ACS Catal. 2021, 11, 13463–13471.
- 18L. Lin, Z. Lin, J. Zhang, X. Cai, W. Lin, Z. Yu, X. Wang, Nat. Catal. 2020, 3, 649–655.
- 19P. Xia, M. Antonietti, B. Zhu, T. Heil, J. Yu, S. Cao, Adv. Funct. Mater. 2019, 29, 1900093.
- 20X. Shi, Y. Huang, Y. Bo, D. Duan, Z. Wang, J. Cao, G. Zhu, W. Ho, L. Wang, T. Huang, Y. Xiong, Angew. Chem. Int. Ed. 2022, 61, e202203063; Angew. Chem. 2022, 134, e202203063.
- 21B. Zhu, L. Zhang, D. Xu, B. Cheng, J. Yu, J. CO2 Util. 2017, 21, 327–335.
- 22Q. Lu, K. Eid, W. Li, A. Abdullah, G. Xu, R. Varma, Green Chem. 2021, 23, 5394–5428.
- 23F. Li, X. Yue, D. Zhang, J. Fan, Q. Xiang, Appl. Catal. B 2021, 292, 120179.
- 24Z. Chen, M. Gao, Y. Zhang, N. Duan, T. Fan, J. Xiao, J. Zhang, Y. Dong, J. Li, X. Yi, J. Luo, Nano Energy 2020, 73, 104833.
- 25H. Wu, S. Bandaru, X. Huang, J. Liu, L. Li, Z. Wang, Phys. Chem. Chem. Phys. 2019, 21, 1514–1520.
- 26J. Chen, Z. Li, X. Wang, X. Sang, S. Zheng, S. Liu, B. Yang, Q. Zhang, L. Lei, L. Dai, Y. Hou, Angew. Chem. Int. Ed. 2022, 61, e202111683; Angew. Chem. 2022, 134, e202111683.
- 27P. Hammer, R. G. Lacerda, R. Droppa Jr., F. Alvarez, Diamond Relat. Mater. 2000, 9, 577–581.
- 28P. Niu, L. Zhang, G. Liu, H. Cheng, Adv. Funct. Mater. 2012, 22, 4763–4770.
- 29Q. Han, Z. Cheng, B. Wang, H. Zhang, L. Qu, ACS Nano 2018, 12, 5221–5227.
- 30D. Martin, K. Qiu, S. Shevlin, A. Handoko, X. Chen, Z. Guo, J. Tang, Angew. Chem. Int. Ed. 2014, 53, 9240–9245; Angew. Chem. 2014, 126, 9394–9399.
- 31X. Li, I. Sergeyev, F. Aussenac, A. Masters, T. Maschmeyer, J. Hook, Angew. Chem. Int. Ed. 2018, 57, 6848–6852; Angew. Chem. 2018, 130, 6964–6968.
- 32Y. Hu, Y. Shim, J. Oh, S. Park, S. Park, Y. Ishii, Chem. Mater. 2017, 29, 5080–5089.
- 33Y. Kang, Y. Yang, L. Yin, X. Kang, L. Wang, G. Liu, H. Cheng, Adv. Mater. 2016, 28, 6471–6477.
- 34M. Zhou, S. Wang, P. Yang, C. Huang, X. Wang, ACS Catal. 2018, 8, 4928–4936.
- 35Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem. Int. Ed. 2014, 53, 11926–11930; Angew. Chem. 2014, 126, 12120–12124.
- 36Z. Mo, X. Zhu, Z. Jiang, Y. Song, D. Liu, H. Li, X. Yang, Y. Shee, Y. Lei, S. Yuan, H. Li, L. Song, Q. Yan, H. Xu, Appl. Catal. B 2019, 256, 117854.
- 37P. Yang, H. Zhuzhang, R. Wang, W. Lin, X. Wang, Angew. Chem. Int. Ed. 2019, 58, 1134–1137; Angew. Chem. 2019, 131, 1146–1149.
- 38J. Qin, S. Wang, H. Ren, Y. Hou, X. Wang, Appl. Catal. B 2015, 179, 1–8.
- 39H. Shi, S. Long, S. Hu, J. Hou, W. Ni, C. Song, K. Li, G. Gurzadyan, X. Guo, Appl. Catal. B 2019, 245, 760.
- 40J. Zhang, W. Yang, M. Zhang, H. Wang, R. Si, D. Zhong, T. Lu, Nano Energy 2021, 80, 105542.
- 41S. Roy, E. Reisner, Angew. Chem. Int. Ed. 2019, 58, 12180–12184; Angew. Chem. 2019, 131, 12308–12312.
- 42S. Yang, H. Li, H. Li, H. Li, W. Qi, Q. Zhang, J. Zhu, P. Zhao, L. Chen, Appl. Catal. B 2022, 316, 121612.
- 43Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, Adv. Mater. 2018, 30, 1706108.
- 44J. Yan, M. Rodrigues, Z. Song, H. Li, H. Xu, H. Liu, J. Wu, Y. Xu, Y. Song, Y. Liu, P. Yu, W. Yang, R. Vajtai, H. Li, S. Yuan, Adv. Funct. Mater. 2017, 27, 1700653.
- 45G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B 1998, 18, 1–36.
- 46C. Costentin, S. Drouet, M. Robert, J. Savéant, Science 2012, 338, 90.
- 47L. Jiang, J. Yang, S. Zhou, H. Yu, J. Liang, W. Chu, H. Li, H. Wang, Z. Wu, X. Yuan, Coord. Chem. Rev. 2021, 439, 213947.
- 48P. Yang, H. Ou, Y. Fang, X. Wang, Angew. Chem. Int. Ed. 2017, 56, 3992–3996; Angew. Chem. 2017, 129, 4050–4054.
- 49Y. Wang, P. Du, H. Pan, L. Fu, Y. Zhang, J. Chen, Y. Du, N. Tang, G. Liu, Adv. Mater. 2019, 31, 1807540.
- 50W. Wang, X. Bai, Q. Ci, L. Du, X. Ren, D. Phillips, Adv. Funct. Mater. 2021, 31, 2103978.
- 51K. L. Corp, C. W. Schlenker, J. Am. Chem. Soc. 2017, 139, 7904–7912.
- 52L. Jing, R. Zhu, D. Phillips, J. Yu, Adv. Funct. Mater. 2017, 27, 1703484.
- 53S. Feldt, E. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, J. Am. Chem. Soc. 2010, 132, 16714–16724.
- 54J. Wu, X. Li, W. Shi, P. Ling, Y. Sun, X. Jiao, S. Gao, L. Liang, J. Xu, W. Yan, C. Wang, Y. Xie, Angew. Chem. Int. Ed. 2018, 57, 8719–8723; Angew. Chem. 2018, 130, 8855–8859.
- 55X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Nat. Energy 2019, 4, 690–699.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.