Large-Scale Self-Assembly of MOFs Colloidosomes for Bubble-Propelled Micromotors and Stirring-Free Environmental Remediation
Hai Huang
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Contribution: Data curation (lead), Investigation (lead), Methodology (lead), Software (lead), Visualization (lead), Writing - original draft (lead)
Search for more papers by this authorJie Li
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Contribution: Data curation (equal), Methodology (equal), Writing - original draft (supporting)
Search for more papers by this authorMengge Yuan
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Contribution: Software (supporting), Writing - original draft (supporting)
Search for more papers by this authorHaowei Yang
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Contribution: Data curation (supporting), Software (supporting), Writing - original draft (supporting)
Search for more papers by this authorYu Zhao
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Contribution: Data curation (supporting), Software (supporting), Writing - original draft (supporting)
Search for more papers by this authorCorresponding Author
Yulong Ying
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Contribution: Conceptualization (lead), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Sheng Wang
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Contribution: Funding acquisition (supporting), Writing - review & editing (supporting)
Search for more papers by this authorHai Huang
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Contribution: Data curation (lead), Investigation (lead), Methodology (lead), Software (lead), Visualization (lead), Writing - original draft (lead)
Search for more papers by this authorJie Li
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Contribution: Data curation (equal), Methodology (equal), Writing - original draft (supporting)
Search for more papers by this authorMengge Yuan
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Contribution: Software (supporting), Writing - original draft (supporting)
Search for more papers by this authorHaowei Yang
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Contribution: Data curation (supporting), Software (supporting), Writing - original draft (supporting)
Search for more papers by this authorYu Zhao
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Contribution: Data curation (supporting), Software (supporting), Writing - original draft (supporting)
Search for more papers by this authorCorresponding Author
Yulong Ying
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Contribution: Conceptualization (lead), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Sheng Wang
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Contribution: Funding acquisition (supporting), Writing - review & editing (supporting)
Search for more papers by this authorAbstract
The design of MOF-based micromotors (MOFtors) is still challenging and with limited approaches, especially for the MOF nanoparticles (NPs). Herein, we report a universal and straightforward strategy to efficiently self-assembly MOF NPs into robust MOFtors for enhanced organic- or heavy-metal-ion-contaminants remediation without mechanical stirring. Based on the transient Pickering emulsion method, Fe3O4@NH2-UiO-66 (Fe-UiO) NPs are rapidly self-assembled into Fe3O4@NH2-UiO-66 colloidosomes (Fe-UiOSomes) on a large scale, and the formation mechanism is systematically studied. The Fe-UiOSomes-Pt micromotors through chemical reduction (Micromotor-C) presented a higher motility of 450±180 μm s−1 in a 5 wt% H2O2 aqueous solution. Finally, the bubble-propelled Micromotor-C was employed to efficiently remove dyes and heavy metal ions (94 % for MO and 91 % for CrVI).
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202211163-sup-0001-misc_information.pdf1.8 MB | Supporting Information |
ange202211163-sup-0001-Mov.S1.mp46 MB | Supporting Information |
ange202211163-sup-0001-Mov.S2.mp45.1 MB | Supporting Information |
ange202211163-sup-0001-Mov.S3.mp43.5 MB | Supporting Information |
ange202211163-sup-0001-Mov.S4.mp44.1 MB | Supporting Information |
ange202211163-sup-0001-Mov.S5.mp410.7 MB | Supporting Information |
ange202211163-sup-0001-Mov.S6.mp44.1 MB | Supporting Information |
ange202211163-sup-0001-Mov.S7.mp44.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. L. Xu, F. Z. Mou, H. T. Gong, M. Luo, J. G. Guan, Chem. Soc. Rev. 2017, 46, 6905–6926;
- 1bW. Gao, A. Pei, X. Feng, C. Hennessy, J. Wang, J. Am. Chem. Soc. 2013, 135, 998–1001;
- 1cS. Sánchez, L. Soler, J. Katuri, Angew. Chem. Int. Ed. 2015, 54, 1414–1444; Angew. Chem. 2015, 127, 1432–1464;
- 1dM. Fernández-Medina, M. A. Ramos-Docampo, O. Hovorka, V. Salgueiriño, B. Städler, Adv. Funct. Mater. 2020, 30, 1908283.
- 2
- 2aY. Yang, X. Arqué, T. Patiño, V. Guillerm, P.-R. Blersch, J. Pérez-Carvajal, I. Imaz, D. Maspoch, S. Sánchez, J. Am. Chem. Soc. 2020, 142, 20962–20967;
- 2bM. Liu, L. Chen, Z. Zhao, M. Liu, T. Zhao, Y. Ma, Q. Zhou, Y. S. Ibrahim, A. A. Elzatahry, X. Li, D. Zhao, J. Am. Chem. Soc. 2022, 144, 3892–3901;
- 2cS. Cao, H. Wu, I. A. B. Pijpers, J. Shao, L. K. E. A. Abdelmohsen, D. S. Williams, J. C. M. van Hest, ACS Nano 2021, 15, 18270–18278;
- 2dF. Mou, Q. Xie, J. Liu, S. Che, L. Bahmane, M. You, J. Guan, Nat. Sci. Rev. 2021, 8, nwab066;
- 2eX. Lu, Y. Wei, H. Ou, C. Zhao, L. Shi, W. Liu, Small 2021, 17, 2104516;
- 2fY. Ying, J. Plutnar, M. Pumera, Small 2021, 17, 2100294;
- 2gF. Ji, T. Li, S. Yu, Z. Wu, L. Zhang, ACS Nano 2021, 15, 5118–5128;
- 2hA. M. Boymelgreen, T. Balli, T. Miloh, G. Yossifon, Nat. Commun. 2018, 9, 760.
- 3
- 3aY. Ying, M. Pumera, Chem. Eur. J. 2019, 25, 106–121;
- 3bJ. Parmar, D. Vilela, K. Villa, J. Wang, S. Sánchez, J. Am. Chem. Soc. 2018, 140, 9317–9331;
- 3cC. Liang, C. Zhan, F. Zeng, D. Xu, Y. Wang, W. Zhao, J. Zhang, J. Guo, H. Feng, X. Ma, ACS Appl. Mater. Interfaces 2018, 10, 35099–35107;
- 3dM. Guix, J. Orozco, M. Garcia, W. Gao, S. Sattayasamitsathit, A. Merkoçi, A. Escarpa, J. Wang, ACS Nano 2012, 6, 4445–4451;
- 3eL. Soler, V. Magdanz, V. M. Fomin, S. Sanchez, O. G. Schmidt, ACS Nano 2013, 7, 9611–9620;
- 3fL. Chen, M.-J. Zhang, S.-Y. Zhang, L. Shi, Y.-M. Yang, Z. Liu, X.-J. Ju, R. Xie, W. Wang, L.-Y. Chu, ACS Appl. Mater. Interfaces 2020, 12, 35120–35131;
- 3gB. Qiu, L. Xie, J. Zeng, T. Liu, M. Yan, S. Zhou, Q. Liang, J. Tang, K. Liang, B. Kong, Adv. Funct. Mater. 2021, 31, 2010694;
- 3hF. Zhang, Z. Li, L. Yin, Q. Zhang, N. Askarinam, R. Mundaca-Uribe, F. Tehrani, E. Karshalev, W. Gao, L. Zhang, J. Am. Chem. Soc. 2021, 143, 12194–12201.
- 4H.-C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673–674.
- 5
- 5aM. Dincă, J. R. Long, Chem. Rev. 2020, 120, 8037–8038;
- 5bM. Ding, R. W. Flaig, H.-L. Jiang, O. M. Yaghi, Chem. Soc. Rev. 2019, 48, 2783–2828;
- 5cY. Wang, J. Yan, N. Wen, H. Xiong, S. Cai, Q. He, Y. Hu, D. Peng, Z. Liu, Y. Liu, Biomaterials 2020, 230, 119619;
- 5dS. Banerjee, C. T. Lollar, Z. Xiao, Y. Fang, H.-C. Zhou, Trends Chem. 2020, 2, 467–479;
- 5eL. Ji, H. Zheng, Y. Wei, S. Gong, T. Wang, S. Wang, Z. Chen, Sci. China Mater. 2022, 65, 431–441.
- 6
- 6aB. Khezri, M. Pumera, Adv. Mater. 2019, 31, 1806530;
- 6bA. Terzopoulou, J. D. Nicholas, X.-Z. Chen, B. J. Nelson, S. Pané, J. Puigmartí-Luis, Chem. Rev. 2020, 120, 11175–11193.
- 7K. Vikrant, K.-H. Kim, Catal. Sci. Technol. 2021, 11, 6592–6600.
- 8
- 8aA. Ayala, C. Carbonell, I. Imaz, D. Maspoch, Chem. Commun. 2016, 52, 5096–5099;
- 8bR. Wang, W. Guo, X. Li, Z. Liu, H. Liu, S. Ding, RSC Adv. 2017, 7, 42462–42467;
- 8cJ. Liu, J. Li, G. Wang, W. Yang, J. Yang, Y. Liu, J. Colloid Interface Sci. 2019, 555, 234–244;
- 8dY. Ying, A. M. Pourrahimi, Z. Sofer, S. Matějková, M. Pumera, ACS Nano 2019, 13, 11477–11487;
- 8eJ. Li, X. Yu, M. Xu, W. Liu, E. Sandraz, H. Lan, J. Wang, S. M. Cohen, J. Am. Chem. Soc. 2017, 139, 611–614;
- 8fT. T. Tan, J. T. Cham, M. R. Reithofer, T. A. Hor, J. M. Chin, Chem. Commun. 2014, 50, 15175–15178;
- 8gL. Wang, H. Zhu, Y. Shi, Y. Ge, X. Feng, R. Liu, Y. Li, Y. Ma, L. Wang, Nanoscale 2018, 10, 11384–11391.
- 9
- 9aY. Ikezoe, J. Fang, T. L. Wasik, M. Shi, T. Uemura, S. Kitagawa, H. Matsui, Nano Lett. 2015, 15, 4019–4023;
- 9bY. Ikezoe, J. Fang, T. L. Wasik, T. Uemura, Y. Zheng, S. Kitagawa, H. Matsui, Adv. Mater. 2015, 27, 288–291;
- 9cJ. H. Park, S. Lach, K. Polev, S. Granick, B. A. Grzybowski, ACS Nano 2017, 11, 10914–10923.
- 10
- 10aS. Gao, J. Hou, J. Zeng, J. J. Richardson, Z. Gu, X. Gao, D. Li, M. Gao, D. W. Wang, P. Chen, Adv. Funct. Mater. 2019, 29, 1808900;
- 10bZ. Guo, T. Wang, A. Rawal, J. Hou, Z. Cao, H. Zhang, J. Xu, Z. Gu, V. Chen, K. Liang, Mater. Today 2019, 28, 10–16.
- 11
- 11aX. Wang, X. Z. Chen, C. C. Alcântara, S. Sevim, M. Hoop, A. Terzopoulou, C. De Marco, C. Hu, A. J. de Mello, P. Falcaro, Adv. Mater. 2019, 31, 1901592;
- 11bA. Terzopoulou, X. Wang, X.-Z. Chen, M. Palacios-Corella, C. Pujante, J. Herrero-Martín, X.-H. Qin, J. Sort, A. J. deMello, B. J. Nelson, J. Puigmartí-Luis, S. Pané, Adv. Healthcare Mater. 2020, 9, 2001031;
- 11cJ. Troyano, A. Carné-Sánchez, D. Maspoch, Adv. Mater. 2019, 31, 1808235.
- 12
- 12aL. Li, J. Wang, T. Li, W. Song, G. Zhang, Soft Matter 2014, 10, 7511–7518;
- 12bM. Safdar, S. U. Khan, J. Jänis, Adv. Mater. 2018, 30, 1703660.
- 13Y. You, D. Xu, X. Pan, X. Ma, Appl. Mater. Today 2019, 16, 508–517.
- 14W. Yang, J. Li, Z. Xu, J. Yang, Y. Liu, L. Liu, J. Mater. Chem. C 2019, 7, 10297–10308.
- 15
- 15aM. Pang, A. J. Cairns, Y. Liu, Y. Belmabkhout, H. C. Zeng, M. Eddaoudi, J. Am. Chem. Soc. 2013, 135, 10234–10237;
- 15bD. Liu, F. Zhou, C. Li, T. Zhang, H. Zhang, W. Cai, Y. Li, Angew. Chem. Int. Ed. 2015, 54, 9596–9600; Angew. Chem. 2015, 127, 9732–9736.
- 16
- 16aZ. Niu, J. He, T. P. Russell, Q. Wang, Angew. Chem. Int. Ed. 2010, 49, 10052–10066; Angew. Chem. 2010, 122, 10250–10265;
- 16bZ. Mao, H. Xu, D. Wang, Adv. Funct. Mater. 2010, 20, 1053–1074;
- 16cK. Yin, X. Zeng, W. Z. Liu, Y. K. Xue, X. R. Li, W. Wang, Y. L. Song, Z. Zhu, C. Y. Yang, Anal. Chem. 2019, 91, 6003–6011.
- 17R. Chen, C.-A. Tao, Z. Zhang, X. Chen, Z. Liu, J. Wang, ACS Appl. Mater. Interfaces 2019, 11, 43156–43165.
- 18H. Zhu, Q. Zhang, S. Zhu, Adv. Mater. Interfaces 2016, 3, 1600294.
- 19C. Albert, M. Beladjine, N. Tsapis, E. Fattal, F. Agnely, N. Huang, J. Controlled Release 2019, 309, 302–332.
- 20X. Lyu, X. Liu, C. Zhou, S. Duan, P. Xu, J. Dai, X. Chen, Y. Peng, D. Cui, J. Tang, J. Am. Chem. Soc. 2021, 143, 12154–12164.
- 21
- 21aJ. Qiu, Y. Feng, X. Zhang, M. Jia, J. Yao, J. Colloid Interface Sci. 2017, 499, 151–158;
- 21bC. Wang, C. Xiong, Y. He, C. Yang, X. Li, J. Zheng, S. Wang, Chem. Eng. J. 2021, 415, 128923;
- 21cP. Qi, R. Luo, T. Pichler, J. Zeng, Y. Wang, Y. Fan, K. Sui, J. Hazard. Mater. 2019, 378, 120721;
- 21dJ. E. Efome, D. Rana, T. Matsuura, C. Q. Lan, J. Mater. Chem. A 2018, 6, 4550–4555.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.