Catalytic Multicomponent Synthesis of C-Acyl Glycosides by Consecutive Cross-Electrophile Couplings
Yi Jiang
Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117544 Singapore, Republic of Singapore) E-mails: E-mails
These authors contributed equally to this work.
Contribution: Conceptualization (lead), Investigation (lead), Methodology (lead)
Search for more papers by this authorKai Yang
College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001 China
These authors contributed equally to this work.
Contribution: Conceptualization (equal), Investigation (equal), Methodology (equal)
Search for more papers by this authorDr. Yi Wei
Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117544 Singapore, Republic of Singapore) E-mails: E-mails
Contribution: Methodology (supporting)
Search for more papers by this authorCorresponding Author
Dr. Quanquan Wang
Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117544 Singapore, Republic of Singapore) E-mails: E-mails
Contribution: Conceptualization (equal), Supervision (equal)
Search for more papers by this authorCorresponding Author
Dr. Shi-Jun Li
College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001 China
Contribution: Supervision (equal), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Dr. Yu Lan
College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001 China
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030 China
Contribution: Funding acquisition (equal), Supervision (equal), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Dr. Ming Joo Koh
Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117544 Singapore, Republic of Singapore) E-mails: E-mails
Contribution: Funding acquisition (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorYi Jiang
Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117544 Singapore, Republic of Singapore) E-mails: E-mails
These authors contributed equally to this work.
Contribution: Conceptualization (lead), Investigation (lead), Methodology (lead)
Search for more papers by this authorKai Yang
College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001 China
These authors contributed equally to this work.
Contribution: Conceptualization (equal), Investigation (equal), Methodology (equal)
Search for more papers by this authorDr. Yi Wei
Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117544 Singapore, Republic of Singapore) E-mails: E-mails
Contribution: Methodology (supporting)
Search for more papers by this authorCorresponding Author
Dr. Quanquan Wang
Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117544 Singapore, Republic of Singapore) E-mails: E-mails
Contribution: Conceptualization (equal), Supervision (equal)
Search for more papers by this authorCorresponding Author
Dr. Shi-Jun Li
College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001 China
Contribution: Supervision (equal), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Dr. Yu Lan
College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001 China
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030 China
Contribution: Funding acquisition (equal), Supervision (equal), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Dr. Ming Joo Koh
Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117544 Singapore, Republic of Singapore) E-mails: E-mails
Contribution: Funding acquisition (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
C-Acyl glycosides are versatile intermediates to natural products and medicinally relevant entities. Conventional cross-coupling strategies to secure these molecules often relied on two-component manifolds in which a glycosyl precursor is coupled with an acyl donor (pre-synthesized or generated in situ) under transition metal or dual catalysis to forge a C−C bond. Here, we disclose a three-component Ni-catalyzed reductive regime that facilitates the chemoselective union of glycosyl halides, organoiodides and commercially available isobutyl chloroformate as a CO surrogate. The method tolerates multiple functionalities and the resulting products are obtained in high diastereoselectivities. Theoretical calculations provide a mechanistic rationale for the unexpectedly high chemoselectivity of sequential cross-electrophile couplings. This approach enables the expeditious assembly of difficult-to-synthesize C-acyl glycosides, as well as late-stage keto-glycosylation of oligopeptides.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202211043-sup-0001-compound_47_cif.cif830.5 KB | Supporting Information |
ange202211043-sup-0001-compound_56_cif.cif828.4 KB | Supporting Information |
ange202211043-sup-0001-misc_information.pdf16.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Yang, B. Yu, Chem. Rev. 2017, 117, 12281–12356.
- 2K. Kitamura, Y. Ando, T. Matsumoto, K. Suzuki, Chem. Rev. 2018, 118, 1495–1598.
- 3B. Kuberan, S. A. Sikkander, H. Tomiyama, R. J. Linhardt, Angew. Chem. Int. Ed. 2003, 42, 2073–2075; Angew. Chem. 2003, 115, 2119–2121.
- 4G. Yang, J. Schmieg, M. Tsuji, R. W. Franck, Angew. Chem. Int. Ed. 2004, 43, 3818–3822; Angew. Chem. 2004, 116, 3906–3910.
- 5E. Bokor, S. Kun, D. Goyard, M. Toth, J. P. Praly, S. Vidal, L. Somsak, Chem. Rev. 2017, 117, 1687–1764.
- 6L. Mydock-McGrane, Z. Cusumano, Z. Han, J. Binkley, M. Kostakioti, T. Hannan, J. S. Pinkner, R. Klein, V. Kalas, J. Crowley, N. P. Rath, S. J. Hultgren, J. W. Janetka, J. Med. Chem. 2016, 59, 9390–9408.
- 7G. J. Boehlich, N. Schutzenmeister, Angew. Chem. Int. Ed. 2019, 58, 5110–5113; Angew. Chem. 2019, 131, 5164–5167.
- 8K.-S. Ko, J. Kruse, N. L. Pohl, Org. Lett. 2003, 5, 1781–1783.
- 9Y. Hidaka, N. Kiya, M. Yoritate, K. Usui, G. Hirai, Chem. Commun. 2020, 56, 4712–4715.
- 10G. Hirai, T. Watanabe, K. Yamaguchi, T. Miyagi, M. Sodeoka, J. Am. Chem. Soc. 2007, 129, 15420–15421.
- 11M. Kolympadi, M. Fontanella, C. Venturi, S. Andre, H. J. Gabius, J. Jimenez-Barbero, P. Vogel, Chem. Eur. J. 2009, 15, 2861–2873.
- 12T. Tomori, K. Nagaoka, L. Takeshita, T. Shiozawa, Y. Miyatake, Y. Masaki, M. Sekine, K. Seio, J. Org. Chem. 2018, 83, 8353–8363.
- 13A. Dondoni, N. Catozzi, A. Marra, J. Org. Chem. 2005, 70, 9257–9268.
- 14Y. Geng, A. Kumar, H. M. Faidallah, H. A. Albar, I. A. Mhkalid, R. R. Schmidt, Bioorg. Med. Chem. 2013, 21, 4793–4802.
- 15N. E. Guisot, I. Ella Obame, P. Ireddy, A. Nourry, C. Saluzzo, G. Dujardin, D. Dubreuil, M. Pipelier, S. Guillarme, J. Org. Chem. 2016, 81, 2364–2371.
- 16D. S. Philip, A. S. Greg, E. Varadaraj, J. Am. Chem. Soc. 1985, 107, 7788–7790.
- 17C. Zhao, X. Jia, X. Wang, H. Gong, J. Am. Chem. Soc. 2014, 136, 17645–17651.
- 18X. Jia, X. Zhang, Q. Qian, H. Gong, Chem. Commun. 2015, 51, 10302–10305.
- 19F. Zhu, J. Rodriguez, S. O'Neill, M. A. Walczak, ACS Cent. Sci. 2018, 4, 1652–1662.
- 20S. O. Badir, A. Dumoulin, J. K. Matsui, G. A. Molander, Angew. Chem. Int. Ed. 2018, 57, 6610–6613; Angew. Chem. 2018, 130, 6720–6723.
- 21Y. Wei, J. Lam, T. Diao, Chem. Sci. 2021, 12, 11414–11419.
- 22M. Escolano, M. J. Cabrera-Afonso, M. Ribagorda, S. O. Badir, G. A. Molander, J. Org. Chem. 2022, 87, 4981–4990.
- 23R. Shi, X. Hu, Angew. Chem. Int. Ed. 2019, 58, 7454–7458; Angew. Chem. 2019, 131, 7532–7536.
- 24J. Chen, S. L. Zhu, J. Am. Chem. Soc. 2021, 143, 14089–14096.
- 25H. Chen, H. Yue, C. Zhu, M. Rueping, Angew. Chem. Int. Ed. 2022, 61, e202204144; Angew. Chem. 2022, 134, e202204144.
- 26A. Rérat, C. Michon, F. Agbossou-Niedercorn, C. Gosmini, Eur. J. Org. Chem. 2016, 4554–4560.
- 27S. Biswas, D. J. Weix, J. Am. Chem. Soc. 2013, 135, 16192–16197.
- 28K. A. Johnson, S. Biswas, D. J. Weix, Chem. Eur. J. 2016, 22, 7399–7402.
- 29K. E. Poremba, N. T. Kadunce, N. Suzuki, A. H. Cherney, S. E. Reisman, J. Am. Chem. Soc. 2017, 139, 5684–5687.
- 30K. E. Poremba, S. E. Dibrell, S. E. Reisman, ACS Catal. 2020, 10, 8237–8246.
- 31M. Zheng, W. Xue, T. Xue, H. Gong, Org. Lett. 2016, 18, 6152–6155.
- 32H. Gong, R. S. Andrews, J. L. Zuccarello, S. J. Lee, M. R. Gagne, Org. Lett. 2009, 11, 879–882.
- 33R. S. Andrews, J. J. Becker, M. R. Gagne, Angew. Chem. Int. Ed. 2010, 49, 7274–7276; Angew. Chem. 2010, 122, 7432–7434.
- 34R. S. Andrews, J. J. Becker, M. R. Gagne, Angew. Chem. Int. Ed. 2012, 51, 4140–4143; Angew. Chem. 2012, 124, 4216–4219.
- 35P. K. Kancharla, C. Navuluri, D. Crich, Angew. Chem. Int. Ed. 2012, 51, 11105–11109; Angew. Chem. 2012, 124, 11267–11271.
- 36I. C. S. Wan, M. D. Witte, A. J. Minnaard, Org. Lett. 2019, 21, 7669–7673.
- 37Y. Jiang, Q. Wang, X. Zhang, M. J. Koh, Chem 2021, 7, 3377–3392.
- 38W. Shang, S. N. Su, R. Shi, Z. D. Mou, G. Q. Yu, X. Zhang, D. Niu, Angew. Chem. Int. Ed. 2021, 60, 385–390; Angew. Chem. 2021, 133, 389–394.
- 39W. Yao, G. Zhao, Y. Wu, L. Zhou, U. Mukherjee, P. Liu, M.-Y. Ngai, J. Am. Chem. Soc. 2022, 144, 3353–3359.
- 40G. Zhao, U. Mukherjee, L. Zhou, Y. Wu, W. Yao, J. N. Mauro, P. Liu, M. Y. Ngai, Chem. Sci. 2022, 13, 6276–6282.
- 41H. Gong, M. R. Gagné, J. Am. Chem. Soc. 2008, 130, 12177–12183.
- 42L. Nicolas, P. Angibaud, I. Stansfield, P. Bonnet, L. Meerpoel, S. Reymond, J. Cossy, Angew. Chem. Int. Ed. 2012, 51, 11101–11104; Angew. Chem. 2012, 124, 11263–11266.
- 43L. Adak, S. Kawamura, G. Toma, T. Takenaka, K. Isozaki, H. Takaya, A. Orita, H. C. Li, T. K. M. Shing, M. Nakamura, J. Am. Chem. Soc. 2017, 139, 10693–10701.
- 44A. Dumoulin, J. K. Matsui, A. Gutierrez-Bonet, G. A. Molander, Angew. Chem. Int. Ed. 2018, 57, 6614–6618; Angew. Chem. 2018, 130, 6724–6728.
- 45J. Liu, H. Gong, Org. Lett. 2018, 20, 7991–7995.
- 46L.-Y. Xu, N.-L. Fan, X.-G. Hu, Org. Biomol. Chem. 2020, 18, 5095–5109.
- 47C.-Y. Li, Y. Ma, Z.-W. Lei, X.-G. Hu, Org. Lett. 2021, 23, 8899–8904.
- 48L.-Q. Wan, X. Zhang, Y. Zou, R. Shi, J. G. Cao, S. Y. Xu, L.-F. Deng, L. Zhou, Y. Gong, X. Shu, G. Y. Lee, H. Ren, L. Dai, S. Qi, K. N. Houk, D. Niu, J. Am. Chem. Soc. 2021, 143, 11919–11926.
- 49Y. Wei, B. Ben-Zvi, T. Diao, Angew. Chem. Int. Ed. 2021, 60, 9433–9438; Angew. Chem. 2021, 133, 9519–9524.
- 50G. Zhao, W. Yao, I. Kevlishvili, J. N. Mauro, P. Liu, M.-Y. Ngai, J. Am. Chem. Soc. 2021, 143, 8590–8596.
- 51M. Zhu, S. Messaoudi, ACS Catal. 2021, 11, 6334–6342.
- 52X.-Y. Gou, Y. Li, W.-Y. Shi, Y.-Y. Luan, Y.-N. Ding, Y. An, Y.-C. Huang, B.-S. Zhang, X.-Y. Liu, Y.-M. Liang, Angew. Chem. Int. Ed. 2022, 61, e202205656; Angew. Chem. 2022, 134, e202205656.
- 53Y. Li, Z. Wang, L. Li, X. Tian, F. Shao, C. Li, Angew. Chem. Int. Ed. 2022, 61, e202110391; Angew. Chem. 2022, 134, e202110391.
- 54Q. Wang, Q. Sun, Y. Jiang, H. Zhang, L. Yu, C. Tian, G. Chen, M. J. Koh, Nat. Synth. 2022, 1, 235–244.
- 55D. A. Everson, R. Shrestha, D. J. Weix, J. Am. Chem. Soc. 2010, 132, 920–921.
- 56Q. Lin, T. Diao, J. Am. Chem. Soc. 2019, 141, 17937–17948.
- 57T. Yang, Y. Jiang, Y. Luo, J. J. H. Lim, Y. Lan, M. J. Koh, J. Am. Chem. Soc. 2020, 142, 21410–21419.
- 58H. Lyu, I. Kevlishvili, X. Yu, P. Liu, G. Dong, Science 2021, 372, 175–182.
- 59J. Li, Y. Luo, H. W. Cheo, Y. Lan, J. Wu, Chem 2019, 5, 192–203.
- 60A. Bottoni, G. P. Miscione, J. J. Novoa, X. Prat-Resina, J. Am. Chem. Soc. 2003, 125, 10412–10419.
- 61C. Fang, M. Fantin, X. Pan, K. de Fiebre, M. L. Coote, K. Matyjaszewski, P. Liu, J. Am. Chem. Soc. 2019, 141, 7486–7497.
- 62H. Abe, S. Shuto, A. Matsuda, J. Am. Chem. Soc. 2001, 123, 11870–11882.
- 63Deposition Numbers 2179154 (for 47), 2179153 (for 56) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 64M. K. Bilyard, H. J. Bailey, L. Raich, M. A. Gafitescu, T. Machida, J. Iglesias-Fernandez, S. S. Lee, C. D. Spicer, C. Rovira, W. W. Yue, B. G. Davis, Nature 2018, 563, 235–240.
- 65J. Wu, N. Kaplaneris, S. Ni, F. Kaltenhauser, L. Ackermann, Chem. Sci. 2020, 11, 6521–6526.
- 66Y.-H. Liu, Y.-N. Xia, T. Gulzar, B. Wei, H. Li, D. Zhu, Z. Hu, P. Xu, B. Yu, Nat. Commun. 2021, 12, 4924.
- 67R. Mao, S. Xi, S. Shah, M. J. Roy, A. John, J. P. Lingford, G. Gade, N. E. Scott, E. D. Goddard-Borger, J. Am. Chem. Soc. 2021, 143, 12699–12707.
- 68Q. Wang, Y. Fu, W. Zhu, S. An, Q. Zhou, S.-F. Zhu, G. He, P. Liu, G. Chen, CCS Chem. 2021, 3, 1729–1736.
- 69R. Qi, C. Wang, Z. Ma, H. Wang, Q. Chen, L. Liu, D. Pan, X. Ren, R. Wang, Z. Xu, Angew. Chem. Int. Ed. 2022, 61, e202200822; Angew. Chem. 2022, 134, e202200822.
- 70D. C. Koester, E. Kriemen, D. B. Werz, Angew. Chem. Int. Ed. 2013, 52, 2985–2989; Angew. Chem. 2013, 125, 3059–3063.
- 71N. Kiya, Y. Hidaka, K. Usui, G. Hirai, Org. Lett. 2019, 21, 1588–1592.
- 72J. Wu, A. Kopp, L. Ackermann, Angew. Chem. Int. Ed. 2022, 61, e202114993; Angew. Chem. 2022, 134, e202114993.
- 73M. de Robichon, A. Bordessa, N. Lubin-Germain, A. Ferry, J. Org. Chem. 2019, 84, 3328–3339.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.