Transition-Metal-Catalyzed Denitrogenative Annulation to Access High-Valued N-Heterocycles
Dr. Sandip Kumar Das
Department of Biological & Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh India
Search for more papers by this authorDr. Satyajit Roy
Department of Biological & Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh India
Search for more papers by this authorCorresponding Author
Prof. Dr. Buddhadeb Chattopadhyay
Department of Biological & Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh India
Search for more papers by this authorDr. Sandip Kumar Das
Department of Biological & Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh India
Search for more papers by this authorDr. Satyajit Roy
Department of Biological & Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh India
Search for more papers by this authorCorresponding Author
Prof. Dr. Buddhadeb Chattopadhyay
Department of Biological & Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh India
Search for more papers by this authorAbstract
Over the past few years, the development of efficient methods to construct high-valued N-heterocyclic molecules have received massive attention owing to their extensive application in the areas of medicinal chemistry, drug discovery, natural product synthesis and so on. To access those high-valued N-heterocycles, many methods have been developed. In this context, transition-metal-catalyzed denitrogenative annulation of 1,2,3-triazoles and 1,2,3,4-tetrazoles has appeared as a powerful synthetic tool because it offers a step- and atom-economical route for the preparation of the nitrogen-rich molecules. Compared with the denitrogenative annulation of various 1,2,3-triazole frameworks, annulation of 1,2,3,4-tetrazole remains more challenging due to the inertness of the tetrazole moiety. This Review summarizes the significant achievements made in the field of denitrogenative annulation of various 1,2,3-triazoles and 1,2,3,4-tetrazoles including some pioneering examples in this area of research. We anticipate that this denitrogenative annulation reaction will find broad applications in the pharmaceutical industry, drug discovery and other fields of medicinal chemistry.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aP. N. Kalaria, S. C. Karad, D. K. Raval, Eur. J. Med. Chem. 2018, 158, 917–936;
- 1bA. R. Katritzky, C. W. Rees, Comprehensive Heterocyclic Chemistry: The Structure, Reactions, Synthesis and Uses of Heterocyclic Compounds, 1st ed., Pergamon, Oxford, New York, 1984;
- 1cA. R. Katritzky, C. W. Rees, E. F. V. Scriven, Comprehensive Heterocyclic Chemistry II: A Review of the Literature 1982-1995: The Structure, Reactions, Synthesis, and Uses of Heterocyclic Compounds, 1st ed., Pergamon, Oxford, 1996;
- 1dA. A. Ataf, A. Shahzad, Z. Gul, N. Rasool, A. Badshah, B. Lal, E. A. Khan, J. Drug Des. Med. Chem. 2015, 1, 1–11.
- 2
- 2aS. Roy, S. K. Das, H. Khatua, S. Das, B. Chattopadhyay, Acc. Chem. Res. 2021, 54, 4395–4409;
- 2bB. Chattopadhyay, V. Gevorgyan, Angew. Chem. Int. Ed. 2012, 51, 862–872; Angew. Chem. 2012, 124, 886–896;
- 2cM. Akter, K. Rupa, P. Anbarasan, Chem. Rev. 2022, 122, 13108–13205.
- 3K. von Fraunberg, R. Huisgen, Tetrahedron Lett. 1969, 10, 2599–2602.
10.1016/S0040-4039(01)88578-6 Google Scholar
- 4R. Huisgen, K. von Fraunberg, H. J. Sturm, Tetrahedron Lett. 1969, 10, 2589–2594.
10.1016/S0040-4039(01)88576-2 Google Scholar
- 5R. Huisgen, K. von Fraunberg, Tetrahedron Lett. 1969, 10, 2595–2598.
10.1016/S0040-4039(01)88577-4 Google Scholar
- 6R. Harder, C. Wentrup, J. Am. Chem. Soc. 1976, 98, 1259–1260.
- 7B. Chattopadhyay, C. I. Rivera-Vera, S. Chuprakov, V. Gevorgyan, Org. Lett. 2010, 12, 2166–2169.
- 8B. Abarca, R. Ballesteros, F. Mojarred, G. Jones, D. J. Mouat, J. Chem. Soc. Perkin Trans. 1 1987, 1865–1868.
- 9C. Wang, Y. Zhou, X. Bao, J. Org. Chem. 2017, 82, 3751–3759.
- 10S. Chuprakov, F. Hwang, V. Gevorgyan, Angew. Chem. Int. Ed. 2007, 46, 4757–4759; Angew. Chem. 2007, 119, 4841–4843.
- 11S. Chuprakov, V. Gevorgyan, Org. Lett. 2007, 9, 4463–4466.
- 12H. Kim, S. Kim, J. Kim, J.-Y. Son, Y. Baek, K. Um, P. H. Lee, Org. Lett. 2017, 19, 5677–5680.
- 13X. Lv, H. Yang, T. Shi, D. Xing, X. Xu, W. Hu, Adv. Synth. Catal. 2019, 361, 1265–1270.
- 14J. H. Kim, T. Gensch, D. Zhao, L. Stegemann, C. A. Stassert, F. Glorius, Angew. Chem. Int. Ed. 2015, 54, 10975–10979.
- 15V. Helan, A. V. Gulevich, V. Gevorgyan, Chem. Sci. 2015, 6, 1928–1931.
- 16Y. Shi, V. Gevorgyan, Chem. Commun. 2015, 51, 17166–17169.
- 17A. Joshi, D. C. Mohan, S. Adimurthy, Org. Lett. 2016, 18, 464–467.
- 18S. Roy, S. K. Das, B. Chattopadhyay, Angew. Chem. Int. Ed. 2018, 57, 2238–2243; Angew. Chem. 2018, 130, 2260–2265.
- 19] F. J. Ritter, I. E. M. Rotgans, E. Tulman, P. E. Verwiel, F. Stein, Experientia 1973, 29, 530–531.
- 20Z. Zhang, V. Gevorgyan, Org. Lett. 2020, 22, 8500–8504.
- 21M. Yamauchi, T. Miura, M. Murakami, Heterocycles 2010, 80, 177–181.
- 22J. M. Keith, J. Org. Chem. 2010, 75, 2722–2725.
- 23V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596–2599;
10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 2708–2711.
- 24C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057–3064.
- 25J. Yoo, M. Ahlquist, S. H. Kim, I. Bae, V. V. Fokin, K. B. Sharpless, S. Chang, Angew. Chem. Int. Ed. 2007, 46, 1730–1733; Angew. Chem. 2007, 119, 1760–1763.
- 26J. Raushel, V. V. Fokin, Org. Lett. 2010, 12, 4952–4955.
- 27Y. Liu, X. Wang, J. Xu, Q. Zhang, Y. Zhao, Y. Hu, Tetrahedron 2011, 67, 6294–6299.
- 28O. Dimroth, Justus Liebigs Ann. Chem. 1909, 364, 183–226.
- 29T. Horneff, S. Chuprakov, N. Chernyak, V. Gevorgyan, V. V. Fokin, J. Am. Chem. Soc. 2008, 130, 14972–14974.
- 30R. Connell, F. Scavo, P. Helquist, B. Akermark, Tetrahedron Lett. 1986, 27, 5559–5562.
- 31T. Miura, M. Yamauchi, M. Murakami, Chem. Commun. 2009, 1470–1471.
- 32B. Chattopadhyay, V. Gevorgyan, Org. Lett. 2011, 13, 3746–3749.
- 33Y. Shi, V. Gevorgyan, Org. Lett. 2013, 15, 5394–5396.
- 34S. Chuprakov, S. W. Kwok, L. Zhang, L. Lercher, V. V. Fokin, J. Am. Chem. Soc. 2009, 131, 18034–18035.
- 35N. Grimster, L. Zhang, V. V. Fokin, J. Am. Chem. Soc. 2010, 132, 2510–2511.
- 36B. T. Parr, S. A. Green, H. M. L. Davies, J. Am. Chem. Soc. 2013, 135, 4716–4718.
- 37J. E. Spangler, H. M. L. Davies, J. Am. Chem. Soc. 2013, 135, 6802–6805.
- 38M. Zibinsky, V. V. Fokin, Angew. Chem. Int. Ed. 2013, 52, 1507–1510; Angew. Chem. 2013, 125, 1547–1550.
- 39H. J. Yang, S. T. Hou, C. Tao, Z. Liu, C. Wang, B. Cheng, Y. Li, H. Zhai, Chem. Eur. J. 2017, 23, 12930–12936.
- 40I. Nakamura, T. Nemoto, N. Shiraiwa, M. Terada, Org. Lett. 2009, 11, 1055–1058.
- 41R. C. Larock, E. K. Yum, J. Am. Chem. Soc. 1991, 113, 6689–6690.
- 42D. Kumar, A. Mishra, B. B. Mishra, S. Bhattacharya, V. K. Tiwari, J. Org. Chem. 2013, 78, 899–909.
- 43A. S. Singh, N. Mishra, D. Kumar, V. K. Tiwari, ACS Omega 2017, 2, 5044–5051.
- 44Y. Su, J. L. Petersen, T. L. Gregg, X. Shi, Org. Lett. 2015, 17, 1208–1211.
- 45Y. Wang, Y. Li, Y. Fan, Z. Wang, Y. Tang, Chem. Commun. 2017, 53, 11873–11876.
- 46Z. Yin, Z. Wang, X.-F. Wu, Org. Lett. 2017, 19, 6232–6235.
- 47P.-C. Zhang, J. Han, J. Zhang, Angew. Chem. Int. Ed. 2019, 58, 11444–11448; Angew. Chem. 2019, 131, 11566–11570.
- 48S. Battula, A. Kumar, A. P. Gupta, Q. N. Ahmed, Org. Lett. 2015, 17, 5562–5565.
- 49T. Miura, M. Yamauchi, M. Murakami, Org. Lett. 2008, 10, 3085–3088.
- 50M. Yamauchi, M. Morimoto, T. Miura, M. Murakami, J. Am. Chem. Soc. 2010, 132, 54–55.
- 51T. Miura, M. Morimoto, M. Yamauchi, M. Murakami, J. Org. Chem. 2010, 75, 5359–5362.
- 52T. Miura, Y. Nishida, M. Morimoto, M. Yamauchi, M. Murakami, Org. Lett. 2011, 13, 1429–1431.
- 53T. Miura, M. Yamauchi, A. Kosaka, M. Murakami, Angew. Chem. Int. Ed. 2010, 49, 4955–4957; Angew. Chem. 2010, 122, 5075–5077.
- 54J. A. Bladin, Ber. Dtsch. Chem. Ges. 1885, 18, 1544–1551.
10.1002/cber.188501801335 Google Scholar
- 55D. S. Wishart, Nucleic Acids Res. 2006, 34, D668–D672.
- 56T. Nakamuro, K. Hagiwara, T. Miura, M. Murakami, Angew. Chem. Int. Ed. 2018, 57, 5497–5500; Angew. Chem. 2018, 130, 5595–5598.
- 57J. H. Boyer, E. J. Miller, J. Am. Chem. Soc. 1959, 81, 4671–4673.
- 58
- 58aS. K. Das, S. Roy, H. Khatua, B. Chattopadhyay, J. Am. Chem. Soc. 2018, 140, 8429–8433;
- 58bRecently, we have demonstrated that instead of the iridium catalyst, the reaction can even be performed employing the iron-based catalytic system, for details, see: S. K. Das, S. Das, S. Ghosh, S. Roy, M. Pareek, B. Roy, R. B. Sunoj, B. Chattopadhyay, Chem. Sci. 2022, 13, 11817–11828.
- 59H. Khatua, S. K. Das, S. Roy, B. Chattopadhyay, Angew. Chem. Int. Ed. 2021, 60, 304–312; Angew. Chem. 2021, 133, 308–316.
- 60
- 60aH. Lu, H. Jiang, Y. Hu, L. Wojtas, X. P. Zhang, Chem. Sci. 2011, 2, 2361–2366;
- 60bP. F. Kuijpers, M. J. Tiekink, W. B. Breukelaar, D. L. J. Broere, N. P. van Leest, J. I. van der Vlugt, J. N. H. Reek, B. de Bruin, Chem. Eur. J. 2017, 23, 7945–7952;
- 60cH. Jiang, K. Lang, H. Lu, L. Wojtas, X. P. Zhang, Angew. Chem. Int. Ed. 2016, 55, 11604–11608; Angew. Chem. 2016, 128, 11776–11780;
- 60dH.-J. Lu, X. P. Zhang, Chem. Soc. Rev. 2011, 40, 1899–1909;
- 60eY. Wang, X. Wen, X. Cui, L. Wojtas, X. P. Zhang, J. Am. Chem. Soc. 2017, 139, 1049–1052;
- 60fK. Lang, S. Torker, L. Wojtas, X. P. Zhang, J. Am. Chem. Soc. 2019, 141, 12388–12396;
- 60gM. Zhou, M. Lankelma, J. I. van der Vlugt, B. de. Bruin, Angew. Chem. Int. Ed. 2020, 59, 11073–11079; Angew. Chem. 2020, 132, 11166–11172;
- 60hC. Li, K. Lang, H. Lu, Y. Hu, X. Cui, L. Wojtas, Angew. Chem. Int. Ed. 2018, 57, 16837–16841; Angew. Chem. 2018, 130, 17079–17083.
- 61S. Roy, H. Khatua, S. K. Das, B. Chattopadhyay, Angew. Chem. Int. Ed. 2019, 58, 11439–11443; Angew. Chem. 2019, 131, 11561–11565.
- 62E. Neumann, W. T. Ralvenius, M. A. Acuña, U. Rudolph, H. U. Zeilhofer, Neuropharmacology 2018, 143, 71–78.
- 63L.-M. Jin, H. Lu, Y. Cui, C. L. Lizardi, T. N. Arzua, L. Wojtas, X. Cui, X. P. Zhang, Chem. Sci. 2014, 5, 2422–2427.
- 64S. K. Das, S. Roy, H. Khatua, B. Chattopadhyay, J. Am. Chem. Soc. 2020, 142, 16211–16217.
- 65
- 65aM. F. Sloan, W. B. Renfrow, D. S. Breslow, Tetrahedron Lett. 1964, 5, 2905–2909;
10.1016/S0040-4039(00)70443-6 Google Scholar
- 65bR. Breslow, S. L. Gellman, J. Chem. Soc. Chem. Commun. 1982, 1400–1401;
- 65cR. Breslow, S. L. Gellman, J. Am. Chem. Soc. 1983, 105, 6728–6729.
- 66E. T. Hennessy, T. A. Betley, Science 2013, 340, 591–595.
- 67J. R. Clark, K. Feng, A. Sookezian, M. C. White, Nat. Chem. 2018, 10, 583–591.
- 68G. Andrei, K. Mikhail, K. Ruben, R. Konstantin, A K. Igor, G. Elena, S. Olga, S. Andrey, US Pat., 8, 420, 815 Bl, 2013.
- 69S. Roy, S. K. Das, H. Khatua, S. Das, K. N. Singh, B. Chattopadhyay, Angew. Chem. Int. Ed. 2021, 60, 8772–8780; Angew. Chem. 2021, 133, 8854–8862.
- 70T. Miura, Y. Funakoshi, M. Morimoto, T. Biyajima, M. Murakami, J. Am. Chem. Soc. 2012, 134, 17440–17443.
- 71N. Selander, B. T. Worrell, V. V. Fokin, Angew. Chem. Int. Ed. 2012, 51, 13054–13057.
- 72K. Sun, S. Liu, P. M. Bec, T. G. Driver, Angew. Chem. Int. Ed. 2011, 50, 1702–1706; Angew. Chem. 2011, 123, 1740–1744.
- 73K. Chen, Z.-Z. Zhu, Y.-S. Zhang, X.-Y. Tang, M. Shi, Angew. Chem. Int. Ed. 2014, 53, 6645–6649; Angew. Chem. 2014, 126, 6763–6767.
- 74S. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. 2005, 44, 5188–5240; Angew. Chem. 2005, 117, 5320–5374.
- 75U. Mueller, J. Dressel, P. Fey, R. Hanko, W. Huebsch, T. Kraemer, M. Mueller-Gliemann, M. Beuck, S. Kazda, S. Wohlfeil, A. Knorr, J. P. Stasch, S. Zaiss, From Ger. Offen. DE 4308788A1 19940922, 1994.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.