Nickel-Hydride-Catalyzed Diastereo- and Enantioselective Hydroalkylation of Cyclopropenes
Qingqin Huang
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian, 350207 China
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
These authors contributed equally to this work.
Search for more papers by this authorYa Chen
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
These authors contributed equally to this work.
Search for more papers by this authorXueting Zhou
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian, 350207 China
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorLei Dai
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorCorresponding Author
Yixin Lu
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian, 350207 China
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorQingqin Huang
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian, 350207 China
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
These authors contributed equally to this work.
Search for more papers by this authorYa Chen
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
These authors contributed equally to this work.
Search for more papers by this authorXueting Zhou
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian, 350207 China
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorLei Dai
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorCorresponding Author
Yixin Lu
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian, 350207 China
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorAbstract
Cyclopropanes are structural motifs that are widely present in natural products and bioactive molecules, and they are also tremendously useful building blocks in synthetic organic chemistry. Asymmetric synthesis of cyclopropane derivatives has been an intensively researched area over the years, but efficient asymmetric preparation of alkylcyclopropane scaffolds remains a challenging topic. Herein, we report a nickel-hydride-catalyzed enantioselective and diastereoselective hydroalkylation of cyclopropenes for facile synthesis of chiral alkylcyclopropane motifs. The reported method is efficient and versatile, taking place under mild reaction conditions, and having broad applicability and excellent functional group tolerance.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202210560-sup-0001-M100.cif1.3 MB | Supporting Information |
ange202210560-sup-0001-misc_information.pdf9.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. A. Wessjohann, W. Brandt, T. Thiemann, Chem. Rev. 2003, 103, 1625–1648;
- 1bC. A. Carson, M. A. Kerr, Chem. Soc. Rev. 2009, 38, 3051–3060;
- 1cD. Y. K. Chen, R. H. Pouwer, J.-A. Richard, Chem. Soc. Rev. 2012, 41, 4631–4642;
- 1dP. Tang, Y. Qin, Synthesis 2012, 44, 2969–2984.
- 2
- 2aH. N. C. Wong, M. Y. Hon, C. W. Tse, Y. C. Yip, J. Tanko, T. Hudlicky, Chem. Rev. 1989, 89, 165–198;
- 2bM. Rubin, M. Rubina, V. Gevorgyan, Chem. Rev. 2007, 107, 3117–3179;
- 2cV. Pirenne, B. Muriel, J. Waser, Chem. Rev. 2021, 121, 227–263.
- 3
- 3aL. Dian, I. Marek, Chem. Rev. 2018, 118, 8415–8434;
- 3bW. Wu, Z. Lin, H. Jiang, Org. Biomol. Chem. 2018, 16, 7315–7329;
- 3cA. Pons, L. Delion, T. Poisson, A. B. Charette, P. Jubault, Acc. Chem. Res. 2021, 54, 2969–2990.
- 4
- 4aR. Shaw in Diazonium and Diazo Groups (Ed.: S. Patai), Wiley, New York, 1978, pp. 137–147;
- 4bG. Maas, Organic Synthesis, Reactions and Mechanisms, Springer Berlin Heidelberg, Berlin, 1987, pp. 75–253.
10.1007/3-540-16904-0_15 Google Scholar
- 5
- 5aS. E. Denmark, S. P. O'Connor, J. Org. Chem. 1997, 62, 584–594;
- 5bA. B. Charette, H. Juteau, H. Lebel, C. Molinaro, J. Am. Chem. Soc. 1998, 120, 11943–11952.
- 6
- 6aC. D. Papageorgiou, M. A. Cubillo de Dios, S. V. Ley, M. J. Gaunt, Angew. Chem. Int. Ed. 2004, 43, 4641–4644; Angew. Chem. 2004, 116, 4741–4744;
- 6bR. K. Kunz, D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 3240–3241.
- 7
- 7aY. Chen, K. B. Fields, X. P. Zhang, J. Am. Chem. Soc. 2004, 126, 14718–14719;
- 7bY. Hu, K. Lang, J. Tao, M. K. Marshall, Q. Cheng, X. Cui, L. Wojtas, X. P. Zhang, Angew. Chem. Int. Ed. 2019, 58, 2670–2674; Angew. Chem. 2019, 131, 2696–2700.
- 8
- 8aM. L. Deem, Synthesis 1972, 675–691;
- 8bZ.-B. Zhu, Y. Wei, M. Shi, Chem. Soc. Rev. 2011, 40, 5534–5563;
- 8cR. N. Vicente, Synthesis 2016, 48, 2343–2360.
- 9
- 9aM. Rubina, M. Rubin, V. Gevorgyan, J. Am. Chem. Soc. 2003, 125, 7198–7199;
- 9bA. Parra, L. Amenos, M. Guisan-Ceinos, A. Lopez, J. L. García Ruano, M. Tortosa, J. Am. Chem. Soc. 2014, 136, 15833–15836.
- 10
- 10aH.-L. Teng, Y. Luo, B. Wang, L. Zhang, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2016, 55, 15406–15410; Angew. Chem. 2016, 128, 15632–15636;
- 10bH.-L. Teng, Y. Luo, M. Nishiura, Z. Hou, J. Am. Chem. Soc. 2017, 139, 16506–16509.
- 11W. M. Sherrill, M. Rubin, J. Am. Chem. Soc. 2008, 130, 13804–13809.
- 12L. Dian, I. Marek, Angew. Chem. Int. Ed. 2018, 57, 3682–3686; Angew. Chem. 2018, 130, 3744–3748.
- 13W. Huang, F. Meng, Angew. Chem. Int. Ed. 2021, 60, 2694–2698; Angew. Chem. 2021, 133, 2726–2730.
- 14H. Zhang, W. Huang, T. Wang, F. Meng, Angew. Chem. Int. Ed. 2019, 58, 11049–11053; Angew. Chem. 2019, 131, 11165–11169.
- 15
- 15aL. Dian, I. Marek, ACS Catal. 2020, 10, 1289–1293;
- 15bH.-L. Teng, Y. Ma, G. Zhan, M. Nishiura, Z. Hou, ACS Catal. 2018, 8, 4705–4709.
- 16H. Sommer, I. Marek, Chem. Sci. 2018, 9, 6503–6508.
- 17
- 17aD. H. T. Phan, K. G. M. Kou, V. M. Dong, J. Am. Chem. Soc. 2010, 132, 16354–16355;
- 17bF. Liu, X. Bugaut, M. Schedler, R. Fröhlich, F. Glorius, Angew. Chem. Int. Ed. 2011, 50, 12626–12630; Angew. Chem. 2011, 123, 12834–12839.
- 18Z.-Y. Zhao, Y.-X. Nie, R.-H. Tang, G.-W. Yin, J. Cao, Z. Xu, Y.-M. Cui, Z.-J. Zheng, L.-W. Xu, ACS Catal. 2019, 9, 9110–9116.
- 19S. Nie, A. Lu, E. L. Kuker, V. M. Dong, J. Am. Chem. Soc. 2021, 143, 6176–6184.
- 20Y. Luo, H.-L. Teng, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2017, 56, 9207–9210; Angew. Chem. 2017, 129, 9335–9338.
- 21
- 21aM. Nakamura, M. Arai, E. Nakamura, J. Am. Chem. Soc. 1995, 117, 1179–1180;
- 21bX. Liu, J. M. Fox, J. Am. Chem. Soc. 2006, 128, 5600–5601;
- 21cK. Krämer, P. Leong, M. Lautens, Org. Lett. 2011, 13, 819–821;
- 21dD. S. Müller, I. Marek, J. Am. Chem. Soc. 2015, 137, 15414–15417;
- 21eL. Dian, D. S. Müller, I. Marek, Angew. Chem. Int. Ed. 2017, 56, 6783–6787; Angew. Chem. 2017, 129, 6887–6891;
- 21fM. Simaan, I. Marek, Angew. Chem. Int. Ed. 2018, 57, 1543–1546; Angew. Chem. 2018, 130, 1559–1562;
- 21gY. Cohen, I. Marek, Angew. Chem. Int. Ed. 2021, 60, 26368–26372; Angew. Chem. 2021, 133, 26572–26576;
- 21hY. Cohen, A. U. Augustin, L. Levy, P. G. Jones, D. B. Werz, I. Marek, Angew. Chem. Int. Ed. 2021, 60, 11804–11808; Angew. Chem. 2021, 133, 11910–11914.
- 22
- 22aM. Takimoto, Z. Hou, Chem. Eur. J. 2013, 19, 11439–11445;
- 22bT. J. DeLano, S. E. Reisman, ACS Catal. 2019, 9, 6751–6754;
- 22cJ. L. Hofstra, K. E. Poremba, A. M. Shimozono, S. E. Reisman, Angew. Chem. Int. Ed. 2019, 58, 14901–14905; Angew. Chem. 2019, 131, 15043–15047;
- 22dJ. Diccianni, Q. Lin, T. Diao, Acc. Chem. Res. 2020, 53, 906–919;
- 22eX. Wei, W. Shu, A. S. García-Domínguez, E. Merino, C. Nevado, J. Am. Chem. Soc. 2020, 142, 13515–13522;
- 22fZ. Wang, Z.-P. Yang, G. C. Fu, Nat. Chem. 2021, 13, 236–242;
- 22gR. W. Pipal, K. T. Stout, P. Z. Musacchio, S. Ren, T. J. A. Graham, S. Verhoog, L. Gantert, T. G. Lohith, A. Schmitz, H. S. Lee, D. Hesk, E. D. Hostetler, I. W. Davies, D. W. C. MacMillan, Nature. 2021, 589, 542–547.
- 23
- 23aD. Qian, S. Bera, X. Hu, J. Am. Chem. Soc. 2021, 143, 1959–1967;
- 23bP.-F. Yang, L. Zhu, J.-X. Liang, H.-T. Zhao, J.-X. Zhang, X.-W. Zeng, Q. Ouyang, W. Shu, ACS Catal. 2022, 12, 5795–5805;
- 23cZ. Zhang, S. Bera, C. Fan, X. Hu, J. Am. Chem. Soc. 2022, 144, 7015–7029;
- 23dX. Lu, B. Xiao, Z. Zhang, T. Gong, W. Su, J. Yi, Y. Fu, L. Liu, Nat. Commun. 2016, 7, 11129;
- 23eF. Zhou, J. Zhu, Y. Zhang, S. Zhu, Angew. Chem. Int. Ed. 2018, 57, 4058–4062; Angew. Chem. 2018, 130, 4122–4126;
- 23fZ. Wang, H. Yin, G. C. Fu, Nature 2018, 563, 379–383;
- 23gZ.-P. Yang, G. C. Fu, J. Am. Chem. Soc. 2020, 142, 5870–5875;
- 23hS.-J. He, J.-W. Wang, Y. Li, Z.-Y. Xu, X.-X. Wang, X. Lu, Y. Fu, J. Am. Chem. Soc. 2020, 142, 214–221;
- 23iL. Shi, L.-L. Xing, W.-B. Hu, W. Shu, Angew. Chem. Int. Ed. 2021, 60, 1599–1604; Angew. Chem. 2021, 133, 1623–1628;
- 23jS. Bera, R. Mao, X. Hu, Nat. Chem. 2021, 13, 270–277;
- 23kS. Wang, J.-X. Zhang, T.-Y. Zhang, H. Meng, B.-H. Chen, W. Shu, Nat. Commun. 2021, 12, 2771;
- 23lN. A. Eberhardt, H. Guan, Chem. Rev. 2016, 116, 8373–8426;
- 23mF. Zhou, Y. Zhang, X. Xu, S. Zhu, Angew. Chem. Int. Ed. 2019, 58, 1754–1758; Angew. Chem. 2019, 131, 1768–1772;
- 23nJ. Chen, S. Zhu, J. Am. Chem. Soc. 2021, 143, 14089–14096;
- 23oF. Zhou, S. Zhu, ACS Catal. 2021, 11, 8766–8773;
- 23pY. He, J. Chen, X. Jiang, S. Zhu, Chin. J. Chem. 2022, 40, 651–661;
- 23qJ.-W. Wang, Y. Li, W. Nie, Z. Chang, Z.-A. Yu, Y.-F. Zhao, X. Lu, Y. Fu, Nat. Commun. 2021, 12, 1313;
- 23rY. Cheng, Z. Gui, R. Tao, Y. Wang, S. Zhu, Green Synth. Catal. 2022, https://doi.org/10.1016/j.gresc.2022.03.009.
- 24
- 24aC. M. Spencer, M. I. Wilde, Drugs 1998, 56, 405–427;
- 24bM. Briley, J. F. Prost, C. Moret, Int. Clin. Psychopharmacol. 1996, 11 Suppl 4, 9–14.
- 25Deposition Numbers 2189532 (for 3ae) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 26Another catalytic pathway involving the formation of an RNi species and subsequent carbonickelation of cyclopropenes (see the Supporting Information for more details) cannot be completely ruled out. However, we deem this pathway to be less likely, considering that the carbonickelation step is sterically less favorable than the hydronickelation step.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.