Regioisomer-Free Difluoro-Monochloro Terminal-based Hexa-Halogenated Acceptor with Optimized Crystal Packing for Efficient Binary Organic Solar Cells
Dr. Lu Yan
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
These authors contributed equally to this work.
Search for more papers by this authorHeng Zhang
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Qiaoshi An
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorMengyun Jiang
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorAsif Mahmood
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorDr. Min Hun Jee
Department of Chemistry, Korea University, Seoul, 136-713 Republic of Korea
Search for more papers by this authorHai-Rui Bai
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorHong-Fu Zhi
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Shaowen Zhang
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Han Young Woo
Department of Chemistry, Korea University, Seoul, 136-713 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Jin-Liang Wang
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorDr. Lu Yan
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
These authors contributed equally to this work.
Search for more papers by this authorHeng Zhang
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Qiaoshi An
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorMengyun Jiang
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorAsif Mahmood
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorDr. Min Hun Jee
Department of Chemistry, Korea University, Seoul, 136-713 Republic of Korea
Search for more papers by this authorHai-Rui Bai
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorHong-Fu Zhi
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Shaowen Zhang
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Han Young Woo
Department of Chemistry, Korea University, Seoul, 136-713 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Jin-Liang Wang
Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorAbstract
Herein, we synthesized new hetero-halogenated end groups with well-determined fluorinated and chlorinated substitutions (o-FCl-IC and FClF-IC), and synthesized regioisomer-free small molecular acceptors (SMAs) Y-Cl, Y-FCl, and Y-FClF with distinct hetero-halogenated terminals, respectively. The single-crystal structures and theoretical calculations indicate that Y-FClF exhibits more compact three-dimensional network packing and more significant π-π electronic coupling compared to Y-FCl. From Y-Cl to Y-FCl to Y-FClF, the neat films exhibit a narrower optical band gap and gradually enhanced electron mobility and crystallinity. The PM6 : Y-FClF blend film exhibits the strongest crystallinity with preferential face-on molecular packing, desirable fibrous morphology with suitable phase segregation, and the highest and balanced charge mobilities among three blend films. Overall, the PM6 : Y-FClF organic solar cells (OSCs) deliver a remarkable efficiency of 17.65 %, outperforming the PM6 : Y-FCl and PM6 : Y-Cl, which is the best PCE for reported hetero-halogens-based SMAs in binary OSCs. Our results demonstrate that difluoro-monochloro hetero-terminal is a superior regio-regular unit for enhancing the intermolecular crystal packing and photovoltaic performance of hetero-halogenated SMAs.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202209454-sup-0001-misc_information.pdf2.8 MB | Supporting Information |
ange202209454-sup-0001-Y-FCl(2169710).cif2.9 MB | Supporting Information |
ange202209454-sup-0001-Y-FClF(2169391).cif2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Di Carlo Rasi, R. A. Janssen, Adv. Mater. 2019, 31, 1806499.
- 2X. Du, T. Heumueller, W. Gruber, A. Classen, T. Unruh, N. Li, C. J. Brabec, Joule 2019, 3, 215–226.
- 3X. Guo, Q. Fan, J. Wu, G. Li, Z. Peng, W. Su, J. Lin, L. Hou, Y. Qin, H. Ade, L. Ye, M. Zhang, Y. Li, Angew. Chem. Int. Ed. 2021, 60, 2322–2329; Angew. Chem. 2021, 133, 2352–2359.
- 4G. P. Kini, S. J. Jeon, D. K. Moon, Adv. Mater. 2020, 32, 1906175.
- 5L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao, L. Yu, Chem. Rev. 2015, 115, 12666–12731.
- 6N. Schopp, V. V. Brus, J. Lee, A. Dixon, A. Karki, T. Liu, Z. Peng, K. R. Graham, H. Ade, G. C. Bazan, T.-Q. Nguyen, Adv. Funct. Mater. 2021, 31, 2009363.
- 7A. Wadsworth, M. Moser, A. Marks, M. S. Little, N. Gasparini, C. J. Brabec, D. Baran, I. McCulloch, Chem. Soc. Rev. 2019, 48, 1596–1625.
- 8G. Wang, F. S. Melkonyan, A. Facchetti, T. J. Marks, Angew. Chem. Int. Ed. 2019, 58, 4129–4142; Angew. Chem. 2019, 131, 4173–4186.
- 9L. Ye, Y. Xiong, Z. Chen, Q. Zhang, Z. Fei, R. Henry, M. Heeney, B. T. O'Connor, W. You, H. Ade, Adv. Mater. 2019, 31, 1808153.
- 10Z. G. Zhang, Y. Li, Angew. Chem. Int. Ed. 2021, 60, 4422–4433; Angew. Chem. 2021, 133, 4470–4481.
- 11L. Zhu, J. Zhang, Y. Guo, C. Yang, Y. Yi, Z. Wei, Angew. Chem. Int. Ed. 2021, 60, 15348–15353; Angew. Chem. 2021, 133, 15476–15481.
- 12H. R. Bai, Q. An, M. Jiang, H. S. Ryu, J. Yang, X. J. Zhou, H. F. Zhi, C. Yang, X. Li, H. Y. Woo, J.-L. Wang, Adv. Funct. Mater. 2022, 32, 2200807.
- 13Y. Cheng, B. Huang, X. Huang, L. Zhang, S. Kim, Q. Xie, C. Liu, T. Heumüller, Z. Liu, Y. Zhang, F. Wu, C. Yang, C. J. Brabec, Y. Chen, L. Chen, Angew. Chem. Int. Ed. 2022, 61, e202200329; Angew. Chem. 2022, 134, e202200329.
- 14S. Dai, J. Zhou, S. Chandrabose, Y. Shi, G. Han, K. Chen, J. Xin, K. Liu, Z. Chen, Z. Xie, W. Ma, Y. Yi, L. Jiang, J. M. Hodgkiss, X. Zhan, Adv. Mater. 2020, 32, 2000645.
- 15Q. Fan, H. Fu, Q. Wu, Z. Wu, F. Lin, Z. Zhu, J. Min, H. Y. Woo, A. K. Y. Jen, Angew. Chem. Int. Ed. 2021, 60, 15935–15943; Angew. Chem. 2021, 133, 16071–16079.
- 16Q. Fan, W. Su, S. Chen, T. Liu, W. Zhuang, R. Ma, X. Wen, Z. Yin, Z. Luo, X. Guo, L. Hou, K. Moth-Poulsen, Y. Li, Z. Zhang, C. Yang, D. Yu, H. Yan, M. Zhang, E. Wang, Angew. Chem. Int. Ed. 2020, 59, 19835–19840; Angew. Chem. 2020, 132, 20007–20012.
- 17H. H. Gao, Y. Sun, Y. Cai, X. Wan, L. Meng, X. Ke, S. Li, Y. Zhang, R. Xia, N. Zheng, Z. Xie, C. Li, M. Zhang, H.-L. Yip, Y. Cao, Y. Chen, Adv. Energy Mater. 2019, 9, 1901024.
- 18M. Jiang, H. Bai, H. Zhi, L. Yan, H. Y. Woo, L. Tong, J. Wang, F. Zhang, Q. An, Energy Environ. Sci. 2021, 14, 3945–3953.
- 19H. Meng, C. Liao, M. Deng, X. Xu, L. Yu, Q. Peng, Angew. Chem. Int. Ed. 2021, 60, 22554–22561; Angew. Chem. 2021, 133, 22728–22735.
- 20L. Ma, H. Yao, J. Wang, Y. Xu, M. Gao, Y. Zu, Y. Cui, S. Zhang, L. Ye, J. Hou, Angew. Chem. Int. Ed. 2021, 60, 15988–15994; Angew. Chem. 2021, 133, 16124–16130.
- 21X. Yuan, R. Sun, Y. Wu, T. Wang, Y. Wang, W. Wang, Y. Yu, J. Guo, Q. Wu, J. Min, Adv. Funct. Mater. 2022, 32, 2200107.
- 22J.-L. Wang, K.-K. Liu, J. Yan, Z. Wu, F. Liu, F. Xiao, Z.-F. Chang, H.-B. Wu, Y. Cao, T. P. Russell, J. Am. Chem. Soc. 2016, 138, 7687–7697.
- 23C. Zhao, Z. Zhang, F. Han, D. Xia, C. Xiao, J. Fang, Y. Zhang, B. Wu, S. You, Y. Wu, W. Li, Angew. Chem. Int. Ed. 2021, 60, 8526–8531; Angew. Chem. 2021, 133, 8607–8612.
- 24Y. Cai, Y. Li, R. Wang, H. Wu, Z. Chen, J. Zhang, Z. Ma, X. Hao, Y. Zhao, C. Zhang, F. Huang, Y. Sun, Adv. Mater. 2021, 33, 2101733.
- 25Y. Cui, H. Yao, L. Hong, T. Zhang, Y. Tang, B. Lin, K. Xian, B. Gao, C. An, P. Bi, W. Ma, J. Hou, Natl. Sci. Rev. 2020, 7, 1239–1246.
- 26L. Hong, H. Yao, Y. Cui, P. Bi, T. Zhang, Y. Cheng, Y. Zu, J. Qin, R. Yu, Z. Ge, J. Hou, Adv. Mater. 2021, 33, 2103091.
- 27X. Kong, C. Zhu, J. Zhang, L. Meng, S. Qin, J. Zhang, J. Li, Z. Wei, Y. Li, Energy Environ. Sci. 2022, 15, 2011–2020.
- 28C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 2021, 6, 605–613.
- 29H.-R. Bai, Q. An, H.-F. Zhi, M. Jiang, A. Mahmood, L. Yan, M.-Q. Liu, Y.-Q. Liu, Y. Wang, J.-L. Wang, ACS Energy Lett. 2022, 7, 3045–3057.
- 30J. Qin, L. Zhang, C. Zuo, Z. Xiao, Y. Yuan, S. Yang, F. Hao, M. Cheng, K. Sun, Q. Bao, Z. Bin, Z. Jin, L. Ding, J. Semicond. 2021, 42, 010501.
- 31Y. Wang, J. Lee, X. Hou, C. Labanti, J. Yan, E. Mazzolini, A. Parhar, J. Nelson, J. S. Kim, Z. Li, Adv. Energy Mater. 2021, 11, 2003002.
- 32J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140–1151.
- 33C. Zhang, J. Yuan, J. K. W. Ho, J. Song, H. Zhong, Y. Xiao, W. Liu, X. Lu, Y. Zou, S. K. So, Adv. Funct. Mater. 2021, 31, 2101627.
- 34J. Zhang, F. Bai, I. Angunawela, X. Xu, S. Luo, C. Li, G. Chai, H. Yu, Y. Chen, H. Hu, Z. Ma, H. Ade, H. Yan, Adv. Energy Mater. 2021, 11, 2102596.
- 35Y. N. Chen, M. Li, Y. Wang, J. Wang, M. Zhang, Y. Zhou, J. Yang, Y. Liu, F. Liu, Z. Tang, Q. Bao, Z. Bo, Angew. Chem. Int. Ed. 2020, 59, 22714–22720; Angew. Chem. 2020, 132, 22903–22909.
- 36S. Liang, S. Li, Y. Zhang, T. Li, H. Zhou, F. Jin, C. Sheng, G. Ni, J. Yuan, W. Ma, H. Zhao, Adv. Funct. Mater. 2021, 31, 2102764.
- 37W. Gao, H. Fu, Y. Li, F. Lin, R. Sun, Z. Wu, X. Wu, C. Zhong, J. Min, J. Luo, H. Y. Woo, Z. Zhu, A. K.-Y. Jen, Adv. Energy Mater. 2021, 11, 2003177.
- 38Y. Guo, G. Han, Y. Yi, Angew. Chem. Int. Ed. 2022, 61, e202205975; Angew. Chem. 2022, 134, e202205975.
- 39F. Lin, K. Jiang, W. Kaminsky, Z. Zhu, A. K.-Y. Jen, J. Am. Chem. Soc. 2020, 142, 15246–15251.
- 40W. Liu, S. Sun, L. Zhou, Y. Cui, W. Zhang, J. Hou, F. Liu, S. Xu, X. Zhu, Angew. Chem. Int. Ed. 2022, 61, e202116111; Angew. Chem. 2022, 134, e202116111.
- 41C. Tang, X. Ma, J. Y. Wang, X. Zhang, R. Liao, Y. Ma, P. Wang, P. Wang, T. Wang, F. Zhang, Q. Zheng, Angew. Chem. Int. Ed. 2021, 60, 19314–19323; Angew. Chem. 2021, 133, 19463–19472.
- 42C. Yang, Q. An, H. R. Bai, H. F. Zhi, H. S. Ryu, A. Mahmood, X. Zhao, S. Zhang, H. Y. Woo, J.-L. Wang, Angew. Chem. Int. Ed. 2021, 60, 19241–19252; Angew. Chem. 2021, 133, 19390–19401.
- 43Z. Zhang, Y. Li, G. Cai, Y. Zhang, X. Lu, Y. Lin, J. Am. Chem. Soc. 2020, 142, 18741–18745.
- 44Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Adv. Mater. 2020, 32, 1908205.
- 45K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, H. Yan, Joule 2019, 3, 3020–3033.
- 46J. Ge, L. Hong, H. Ma, Q. Ye, Y. Chen, L. Xie, W. Song, D. Li, Z. Chen, K. Yu, J. Zhang, Z. Wei, F. Huang, Z. Ge, Adv. Mater. 2022, 34, 2202752.
- 47L. Chen, C. Cao, H. Lai, Y. Zhu, M. Pu, N. Zheng, F. He, ACS Appl. Mater. Interfaces 2021, 13, 29737–29745.
- 48H. Lai, Q. Zhao, Z. Chen, H. Chen, P. Chao, Y. Zhu, Y. Lang, N. Zhen, D. Mo, Y. Zhang, F. He, Joule 2020, 4, 688–700.
- 49S. Li, L. Ye, W. Zhao, S. Zhang, H. Ade, J. Hou, Adv. Energy Mater. 2017, 7, 1700183.
- 50G.-Y. Ge, J.-T. Li, J.-R. Wang, M. Xiong, X. Dong, Z.-J. Li, J.-L. Li, X.-Y. Cao, T. Lei, J.-L. Wang, Adv. Funct. Mater. 2022, 32, 2108289..
- 51Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, H. Yan, Joule 2020, 4, 1236–1247.
- 52Y. Pan, X. Zheng, J. Guo, Z. Chen, S. Li, C. He, S. Ye, X. Xia, S. Wang, X. Lu, H. Zhu, J. Min, L. Zuo, M. Shi, H. Chen, Adv. Funct. Mater. 2022, 32, 2108614.
- 53H. Yao, Y. Cui, R. Yu, B. Gao, H. Zhang, J. Hou, Angew. Chem. Int. Ed. 2017, 56, 3045–3049; Angew. Chem. 2017, 129, 3091–3095.
- 54L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, H. Chen, Energy Environ. Sci. 2020, 13, 635–645.
- 55X. Zhang, L. Qin, J. Yu, Y. Li, Y. Wei, X. Liu, X. Lu, F. Gao, H. Huang, Angew. Chem. Int. Ed. 2021, 60, 12475–12481; Angew. Chem. 2021, 133, 12583–12589.
- 56H. Chen, H. Lai, Z. Chen, Y. Zhu, H. Wang, L. Han, Y. Zhang, F. He, Angew. Chem. Int. Ed. 2021, 60, 3238–3246; Angew. Chem. 2021, 133, 3275–3283.
- 57G. Li, L.-W. Feng, S. Mukherjee, L. O. Jones, R. M. Jacobberger, W. Huang, R. M. Young, R. M. Pankow, W. Zhu, N. Lu, K. L. Kohlstedt, V. K. Sangwan, M. R. Wasielewski, M. C. Hersam, G. C. Schatz, D. M. DeLongchamp, A. Facchetti, T. J. Marks, Energy Environ. Sci. 2022, 15, 645–659.
- 58G. Li, X. Zhang, L. O. Jones, J. M. Alzola, S. Mukherjee, L.-w. Feng, W. Zhu, C. L. Stern, W. Huang, J. Yu, V. K. Sangwan, D. M. DeLongchamp, K. L. Kohlstedt, M. R. Wasielewski, M. C. Hersam, G. C. Schatz, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2021, 143, 6123–6139.
- 59X. Li, I. Angunawela, Y. Chang, J. Zhou, H. Huang, L. Zhong, A. Liebman-Pelaez, C. Zhu, L. Meng, Z. Xie, H. Ade, H. Yan, Y. Li, Energy Environ. Sci. 2020, 13, 5028–5038.
- 60Y. Li, J.-D. Lin, X. Che, Y. Qu, F. Liu, L.-S. Liao, S. R. Forrest, J. Am. Chem. Soc. 2017, 139, 17114–17119.
- 61J.-L. Wang, K.-K. Liu, L. Hong, G.-Y. Ge, C. Zhang, J. Hou, ACS Energy Lett. 2018, 3, 2967–2976.
- 62T. J. Wen, Z. X. Liu, Z. Chen, J. Zhou, Z. Shen, Y. Xiao, X. Lu, Z. Xie, H. Zhu, C. Z. Li, H. Chen, Angew. Chem. Int. Ed. 2021, 60, 12964–12970; Angew. Chem. 2021, 133, 13074–13080.
- 63Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang, L. Hong, K. Xian, B. Xu, S. Zhang, J. Peng, Z. Wei, F. Gao, J. Hou, Nat. Commun. 2019, 10, 2515.
- 64S. Li, L. Zhan, Y. Jin, G. Zhou, T. K. Lau, R. Qin, M. Shi, C. Z. Li, H. Zhu, X. Lu, F. Zhang, H. Chen, Adv. Mater. 2020, 32, 2001160.
- 65T. J. Aldrich, M. Matta, W. Zhu, S. M. Swick, C. L. Stern, G. C. Schatz, A. Facchetti, F. S. Melkonyan, T. J. Marks, J. Am. Chem. Soc. 2019, 141, 3274–3287.
- 66L. Ma, H. Yao, J. Wang, Y. Xu, M. Gao, Y. Zu, Y. Cui, S. Zhang, L. Ye, J. Hou, Angew. Chem. Int. Ed. 2021, 60, 15988–15994; Angew. Chem. 2021, 133, 16124–16130.
- 67D. Hu, Q. Yang, Y. Zheng, H. Tang, S. Chung, R. Singh, J. Lv, J. Fu, Z. Kan, B. Qin, Q. Chen, Z. Liao, H. Chen, Z. Xiao, K. Sun, S. Lu, Adv. Sci. 2021, 8, 2004262.
- 68T. Liu, Y. Zhang, Y. Shao, R. Ma, Z. Luo, Y. Xiao, T. Yang, X. Lu, Z. Yuan, H. Yan, Y. Chen, Y. Li, Adv. Funct. Mater. 2020, 30, 2000456.
- 69F. Peng, K. An, W. Zhong, Z. Li, L. Ying, N. Li, Z. Huang, C. Zhu, B. Fan, F. Huang, ACS Energy Lett. 2020, 5, 3702–3707.
- 70S.-S. Wan, X. Xu, Z. Jiang, J. Yuan, A. Mahmood, G.-Z. Yuan, K.-K. Liu, W. Ma, Q. Peng, J.-L. Wang, J. Mater. Chem. A 2020, 8, 4856–4867.
- 71H. Yu, S. Luo, R. Sun, I. Angunawela, Z. Qi, Z. Peng, W. Zhou, H. Han, R. Wei, M. Pan, A. M. H. Cheung, D. Zhao, J. Zhang, H. Ade, J. Min, H. Yan, Adv. Funct. Mater. 2021, 31, 2100791.
- 72H. Yu, M. Pan, R. Sun, I. Agunawela, J. Zhang, Y. Li, Z. Qi, H. Han, X. Zou, W. Zhou, S. Chen, J. Y. L. Lai, S. Luo, Z. Luo, D. Zhao, X. Lu, H. Ade, F. Huang, J. Min, H. Yan, Angew. Chem. Int. Ed. 2021, 60, 10137–10146; Angew. Chem. 2021, 133, 10225–10234.
- 73S. Li, L. Zhan, N. Yao, X. Xia, Z. Chen, W. Yang, C. He, L. Zuo, M. Shi, H. Zhu, X. Lu, F. Zhang, H. Chen, Nat. Commun. 2021, 12, 4627.
- 74Z. Luo, R. Ma, Z. Chen, Y. Xiao, G. Zhang, T. Liu, R. Sun, Q. Zhan, Y. Zou, C. Zhong, Y. Chen, H. Sun, G. Chai, K. Chen, X. Guo, J. Min, X. Lu, C. Yang, H. Yan, Adv. Energy Mater. 2020, 10, 2002649.
- 75L. Wang, Q. An, L. Yan, H.-R. Bai, M. Jiang, A. Mahmood, C. Yang, H. Zhi, J.-L. Wang, Energy Environ. Sci. 2022, 15, 320–333.
- 76H. Lai, H. Chen, J. Zhou, J. Qu, P. Chao, T. Liu, X. Chang, N. Zheng, Z. Xie, F. He, iScience 2019, 17, 302–314.
- 77H. Sun, B. Liu, Y. Ma, J.-W. Lee, J. Yang, J. Wang, Y. Li, B. Li, K. Feng, Y. Shi, B. Zhang, D. Han, H. Meng, L. Niu, B. J. Kim, Q. Zheng, X. Guo, Adv. Mater. 2021, 33, 2102635.
- 78Z. Luo, T. Liu, R. Ma, Y. Xiao, L. Zhan, G. Zhang, H. Sun, F. Ni, G. Chai, J. Wang, C. Zhong, Y. Zhong, Y. Zou, X. Guo, X. Lu, H. Chen, H. Yan, C. Yang, Adv. Mater. 2020, 32, 2005942.
- 79L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, J. Hou, Adv. Mater. 2019, 31, 1903441.
- 80Deposition Numbers 2169710 (for Y-FCl) and 2169391 (for Y-FClF) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 81S. M. Swick, J. M. Alzola, V. K. Sangwan, S. H. Amsterdam, W. Zhu, L. O. Jones, N. Powers-Riggs, A. Facchetti, K. L. Kohlstedt, G. C. Schatz, M. C. Hersam, M. R. Wasielewski, T. J. Marks, Adv. Energy Mater. 2020, 10, 2000635.
- 82L. Zhang, L. Hu, X. Wang, H. Mao, L. Zeng, L. Tan, X. Zhuang, Y. Chen, Adv. Funct. Mater. 2022, 32, 2202103.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.