Monte Carlo Simulation-Guided Design of a Thorium-Based Metal–Organic Framework for Efficient Radiotherapy-Radiodynamic Therapy
Ziwan Xu
Department of Chemistry, The University of Chicago, Chicago, IL-60637 USA
These authors contributed equally to this work.
Search for more papers by this authorTaokun Luo
Department of Chemistry, The University of Chicago, Chicago, IL-60637 USA
These authors contributed equally to this work.
Search for more papers by this authorJianming Mao
Department of Chemistry, The University of Chicago, Chicago, IL-60637 USA
Search for more papers by this authorCaroline McCleary
Department of Chemistry, The University of Chicago, Chicago, IL-60637 USA
Search for more papers by this authorEric Yuan
Department of Chemistry, The University of Chicago, Chicago, IL-60637 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Wenbin Lin
Department of Chemistry, The University of Chicago, Chicago, IL-60637 USA
Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL-60637 USA
Search for more papers by this authorZiwan Xu
Department of Chemistry, The University of Chicago, Chicago, IL-60637 USA
These authors contributed equally to this work.
Search for more papers by this authorTaokun Luo
Department of Chemistry, The University of Chicago, Chicago, IL-60637 USA
These authors contributed equally to this work.
Search for more papers by this authorJianming Mao
Department of Chemistry, The University of Chicago, Chicago, IL-60637 USA
Search for more papers by this authorCaroline McCleary
Department of Chemistry, The University of Chicago, Chicago, IL-60637 USA
Search for more papers by this authorEric Yuan
Department of Chemistry, The University of Chicago, Chicago, IL-60637 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Wenbin Lin
Department of Chemistry, The University of Chicago, Chicago, IL-60637 USA
Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL-60637 USA
Search for more papers by this authorAbstract
High-Z metal-based nanoscale metal–organic frameworks (nMOFs) with photosensitizing ligands can enhance radiation damage to tumors via a unique radiotherapy-radiodynamic therapy (RT-RDT) process. Here we report Monte Carlo (MC) simulation-guided design of a Th-based nMOF built from Th6-oxo secondary building units and 5,15-di(p-benzoato)porphyrin (DBP) ligands, Th-DBP, for enhanced RT-RDT. MC simulations revealed that the Th-lattice outperformed the Hf-lattice in radiation dose enhancement owing to its higher mass attenuation coefficient. Upon X-ray or γ-ray radiation, Th-DBP enhanced energy deposition, generated more reactive oxygen species, and induced significantly higher cytotoxicity to cancer cells over the previously reported Hf-DBP nMOF. With low-dose X-ray irradiation, Th-DBP suppressed tumor growth by 88 % in a colon cancer and 97 % in a pancreatic cancer mouse model.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202208685-sup-0001-misc_information.pdf2.9 MB | Supporting Information |
ange202208685-sup-0001-Movie_S1.avi584.9 KB | Supporting Information |
ange202208685-sup-0001-Movie_S2.avi523.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Ca-Cancer J. Clin. 2021, 71, 209–249.
- 2R. Sullivan, O. I. Alatise, B. O. Anderson, R. Audisio, P. Autier, A. Aggarwal, C. Balch, M. F. Brennan, A. Dare, A. D'Cruz, A. M. M. Eggermont, K. Fleming, S. M. Gueye, L. Hagander, C. A. Herrera, H. Holmer, A. M. Ilbawi, A. Jarnheimer, J.-f. Ji, T. P. Kingham, J. Liberman, A. J. M. Leather, J. G. Meara, S. Mukhopadhyay, S. S. Murthy, S. Omar, G. P. Parham, C. S. Pramesh, R. Riviello, D. Rodin, L. Santini, S. V. Shrikhande, M. Shrime, R. Thomas, A. T. Tsunoda, C. van de Velde, U. Veronesi, D. K. Vijaykumar, D. Watters, S. Wang, Y.-L. Wu, M. Zeiton, A. Purushotham, Lancet Oncol. 2015, 16, 1193–1224.
- 3D. Schaue, W. H. McBride, Nat. Rev. Clin. Oncol. 2015, 12, 527–540.
- 4C. Wan, Y. Sun, Y. Tian, L. Lu, X. Dai, J. Meng, J. Huang, Q. He, B. Wu, Z. Zhang, K. Jiang, D. Hu, G. Wu, J. F. Lovell, H. Jin, K. Yang, Sci. Adv. 2020, 6, eaay9789.
- 5Z. Ding, Z. Guo, Y. Zheng, Z. Wang, Q. Fu, Z. Liu, J. Am. Chem. Soc. 2022, 144, 9458–9464.
- 6P. Zhang, M. Xu, J. Ding, J. Chen, T. Zhang, L. Huo, Z. Liu, Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1985–1996.
- 7B. A. Chabner, T. G. Roberts, Nat. Rev. Cancer 2005, 5, 65–72.
- 8I. Mellman, G. Coukos, G. Dranoff, Nature 2011, 480, 480–489.
- 9J. Lou, L. Zhang, G. Zheng, Adv. Ther. 2019, 2, 1800128.
- 10J. A. Damasco, T. Y. Ohulchanskyy, S. Mahajan, G. Chen, A. Singh, H. L. Kutscher, H. Huang, S. G. Turowski, J. A. Spernyak, A. K. Singh, J. F. Lovell, M. Seshadri, P. N. Prasad, Cancer Nanotechnol. 2021, 12, 4.
- 11G. P. Delaney, M. B. Barton, Clin. Oncol. . 2015, 27, 70–76.
- 12L. Gong, Y. Zhang, C. Liu, M. Zhang, S. Han, Int. J. Nanomed. 2021, 16, 1083–1102.
- 13H. Kong, N. S. Chandel, J. Biol. Chem. 2018, 293, 7499–7507.
- 14H. Wang, H. Gao, X. Jiang, P. Zhao, D. Ni, Z. Tang, Y. Liu, X. Zheng, W. Bu, Nano Today 2021, 37, 101099.
- 15Y. Wang, H. Zhang, Y. Liu, M. H. Younis, W. Cai, W. Bu, Mater. Today 2022, 57, 262–278.
- 16K. Haume, S. Rosa, S. Grellet, M. A. Śmiałek, K. T. Butterworth, A. V. Solov'yov, K. M. Prise, J. Golding, N. J. Mason, Cancer Nanotechnol. 2016, 7, 8.
- 17J. F. Hainfeld, D. N. Slatkin, H. M. Smilowitz, Phys. Med. Biol. 2004, 49, N309.
- 18X. Jiang, B. Du, M. Yu, X. Jia, J. Zheng, J. Innov. Opt. Health Sci. 2016, 09, 1642003.
- 19C. Zhou, G. Hao, P. Thomas, J. Liu, M. Yu, S. Sun, O. K. Öz, X. Sun, J. Zheng, Angew. Chem. Int. Ed. 2012, 51, 10118–10122; Angew. Chem. 2012, 124, 10265–10269.
- 20J. Xu, M. Yu, C. Peng, P. Carter, J. Tian, X. Ning, Q. Zhou, Q. Tu, G. Zhang, A. Dao, X. Jiang, P. Kapur, J.-T. Hsieh, X. Zhao, P. Liu, J. Zheng, Angew. Chem. Int. Ed. 2018, 57, 266–271; Angew. Chem. 2018, 130, 272–277.
- 21S. Bonvalot, C. Le Pechoux, T. De Baere, G. Kantor, X. Buy, E. Stoeckle, P. Terrier, P. Sargos, J. M. Coindre, N. Lassau, Clin. Cancer Res. 2017, 23, 908–917.
- 22S. Bonvalot, P. L. Rutkowski, J. Thariat, S. Carrère, A. Ducassou, M.-P. Sunyach, P. Agoston, A. Hong, A. Mervoyer, M. Rastrelli, Lancet Oncol. 2019, 20, 1148–1159.
- 23H. Lusic, M. W. Grinstaff, Chem. Rev. 2013, 113, 1641–1666.
- 24G. D. Wang, H. T. Nguyen, H. Chen, P. B. Cox, L. Wang, K. Nagata, Z. Hao, A. Wang, Z. Li, J. Xie, Theranostics 2016, 6, 2295–2305.
- 25J. Liu, W. Zhang, A. Kumar, X. Rong, W. Yang, H. Chen, J. Xie, Y. Wang, Bioconjugate Chem. 2020, 31, 82–92.
- 26X. Ma, C. Lee, T. Zhang, J. Cai, H. Wang, F. Jiang, Z. Wu, J. Xie, G. Jiang, Z. Li, J. Nanobiotechnol. 2021, 19, 284.
- 27K. Lu, C. He, N. Guo, C. Chan, K. Ni, G. Lan, H. Tang, C. Pelizzari, Y.-X. Fu, M. T. Spiotto, Nat. Biomed. Eng. 2018, 2, 600–610.
- 28K. Ni, G. Lan, C. Chan, B. Quigley, K. Lu, T. Aung, N. Guo, P. La Riviere, R. R. Weichselbaum, W. Lin, Nat. Commun. 2018, 9, 2351.
- 29K. Ni, G. Lan, S. S. Veroneau, X. Duan, Y. Song, W. Lin, Nat. Commun. 2018, 9, 4321.
- 30G. Lan, K. Ni, S. S. Veroneau, Y. Song, W. Lin, J. Am. Chem. Soc. 2018, 140, 16971–16975.
- 31Z. Xu, K. Ni, J. Mao, T. Luo, W. Lin, Adv. Mater. 2021, 33, 2104249.
- 32N. J. Sherck, Y.-Y. Won, Med. Phys. 2017, 44, 6583–6588.
- 33G. Lan, K. Ni, S. S. Veroneau, T. Luo, E. You, W. Lin, J. Am. Chem. Soc. 2019, 141, 6859–6863.
- 34K. Ni, Z. Xu, A. Culbert, T. Luo, N. Guo, K. Yang, E. Pearson, B. Preusser, T. Wu, P. La Riviere, R. R. Weichselbaum, M. T. Spiotto, W. Lin, Nat. Biomed. Eng. 2022, 6, 144–156.
- 35Y. Suda, M. Hariu, R. Yamauchi, R. Miyasaka, A. Myojoyama, W. Chang, H. Saitoh, J. Appl. Clin. Med. Phys. 2021, 22, 255–264.
- 36L. J. Schreiner, C. P. Joshi, J. Darko, A. Kerr, G. Salomons, S. Dhanesar, J. Med. Phys. 2009, 34, 133–136.
- 37I. Kawrakow, D. W. O. Rogers, E. Mainegra-Hing, F. Tessier, B. R. B. Walters, NRCC Report Pirs-701, NRC, Ottawa, 2000.
- 38M. P. Martinov, R. M. Thomson, Med. Phys. 2020, 47, 3225–3232.
- 39X. Chen, Y. Zhuang, N. Rampal, R. Hewitt, G. Divitini, C. A. O'Keefe, X. Liu, D. J. Whitaker, J. W. Wills, R. Jugdaohsingh, J. J. Powell, H. Yu, C. P. Grey, O. A. Scherman, D. Fairen-Jimenez, J. Am. Chem. Soc. 2021, 143, 13557–13572.
- 40K. Manna, P. Ji, F. X. Greene, W. Lin, J. Am. Chem. Soc. 2016, 138, 7488–7491.
- 41L. Feng, S. Yuan, J.-S. Qin, Y. Wang, A. Kirchon, D. Qiu, L. Cheng, S. T. Madrahimov, H.-C. Zhou, Matter 2019, 1, 156–167.
- 42C. Wang, O. Volotskova, K. Lu, M. Ahmad, C. Sun, L. Xing, W. Lin, J. Am. Chem. Soc. 2014, 136, 6171–6174.
- 43M. Overchuk, M. H. Y. Cheng, G. Zheng, ACS Cent. Sci. 2020, 6, 613–615.
- 44E. Ju, K. Dong, Z. Chen, Z. Liu, C. Liu, Y. Huang, Z. Wang, F. Pu, J. Ren, X. Qu, Angew. Chem. Int. Ed. 2016, 55, 11467–11471; Angew. Chem. 2016, 128, 11639–11643.
- 45K. Ni, G. Lan, N. Guo, A. Culbert, T. Luo, T. Wu, R. R. Weichselbaum, W. Lin, Sci. Adv. 2020, 6, eabb5223.
- 46N. Guo, K. Ni, T. Luo, G. Lan, A. Arina, Z. Xu, J. Mao, R. R. Weichselbaum, M. Spiotto, W. Lin, ACS Nano 2021, 15, 17515–17527.
- 47Y. Sun, X. Feng, C. Wan, J. F. Lovell, H. Jin, J. Ding, Asian J. Pharm. Sci. 2021, 16, 129–132.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.