Spatial Well-defined Bimetallic Two-Dimensional Polymers with Single-Layer Thickness for Electrocatalytic Oxygen Evolution Reaction
Dejuan Fa
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorYanhong Tao
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 P. R. China
Search for more papers by this authorXin Pan
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Institute of Theoretical and Simulational Chemistry, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
Search for more papers by this authorDingjia Wang
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 P. R. China
Search for more papers by this authorGuangyuan Feng
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorJiangyan Yuan
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorQingqing Luo
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorYaru Song
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Xuejiao J. Gao
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Ling Yang
Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou, 325001 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shengbin Lei
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wenping Hu
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorDejuan Fa
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorYanhong Tao
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 P. R. China
Search for more papers by this authorXin Pan
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Institute of Theoretical and Simulational Chemistry, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
Search for more papers by this authorDingjia Wang
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 P. R. China
Search for more papers by this authorGuangyuan Feng
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorJiangyan Yuan
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorQingqing Luo
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorYaru Song
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Xuejiao J. Gao
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Ling Yang
Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou, 325001 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shengbin Lei
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wenping Hu
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorAbstract
Innovative bimetallic materials provide more possibilities for further improving the performance of oxygen evolution reaction (OER) electrocatalysts. However, it is still a great challenge to rationally design bimetallic catalysts because there is not a practical way to decouple the factors influencing the intrinsic activity of active sites from others, thus hindering in-depth understanding of the mechanism. Herein, we provide a rational design of bimetallic Ni, Co two-dimensional polymer model OER catalyst. The well-defined architecture, identical density of active sites and monolayer characteristic allow us to decouple the intrinsic activity of active sites from other factors. The results confirmed that the relative position and local coordination environment has significant effect on the synergistic effect of the bimetallic centres. The highest electrocatalytic activity with the turnover frequency value up to 26.19 s−1 was achieved at the overpotential of 500 mV.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202207845-sup-0001-misc_information.pdf4.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. A. Hoque, M. Gil-Sepulcre, A. de Aguirre, J. Elemans, D. Moonshiram, R. Matheu, Y. Shi, J. Benet-Buchholz, X. Sala, M. Malfois, E. Solano, J. Lim, A. Garzon-Manjon, C. Scheu, M. Lanza, F. Maseras, C. Gimbert-Surinach, A. Llobet, Nat. Chem. 2020, 12, 1060–1066;
- 1bL. Han, P. Tang, A. Reyes-Carmona, B. Rodriguez-Garcia, M. Torrens, J. R. Morante, J. Arbiol, J. R. Galan-Mascaros, J. Am. Chem. Soc. 2016, 138, 16037–16045;
- 1cZ. Liang, D. Jiang, X. Wang, M. Shakouri, T. Zhang, Z. Li, P. Tang, J. Llorca, L. Liu, Y. Yuan, M. Heggen, R. E. Dunin-Borkowski, J. R. Morante, A. Cabot, J. Arbiol, Adv. Funct. Mater. 2021, 31, 2106349.
- 2
- 2aS. Zhao, C. Tan, C.-T. He, P. An, F. Xie, S. Jiang, Y. Zhu, K.-H. Wu, B. Zhang, H. Li, J. Zhang, Y. Chen, S. Liu, J. Dong, Z. Tang, Nat. Energy 2020, 5, 881–890;
- 2bF. Dionigi, Z. Zeng, I. Sinev, T. Merzdorf, S. Deshpande, M. B. Lopez, S. Kunze, I. Zegkinoglou, H. Sarodnik, D. Fan, A. Bergmann, J. Drnec, J. F. Araujo, M. Gliech, D. Teschner, J. Zhu, W. X. Li, J. Greeley, B. R. Cuenya, P. Strasser, Nat. Commun. 2020, 11, 2522;
- 2cR. Chen, S. F. Hung, D. Zhou, J. Gao, C. Yang, H. Tao, H. B. Yang, L. Zhang, L. Zhang, Q. Xiong, H. M. Chen, B. Liu, Adv. Mater. 2019, 31, 1903909;
- 2dH. Jiang, Q. He, X. Li, X. Su, Y. Zhang, S. Chen, S. Zhang, G. Zhang, J. Jiang, Y. Luo, P. M. Ajayan, L. Song, Adv. Mater. 2019, 31, 1805127.
- 3
- 3aT. Ghosh, G. Maayan, Angew. Chem. Int. Ed. 2019, 58, 2785–2790; Angew. Chem. 2019, 131, 2811–2816;
- 3bS. J. Koepke, K. M. Light, P. E. VanNatta, K. M. Wiley, M. T. Kieber-Emmons, J. Am. Chem. Soc. 2017, 139, 8586–8600;
- 3cJ. Wang, L. Gan, W. Zhang, Y. Peng, H. Yu, Q. Yan, X. Xia, X. Wang, Sci. Adv. 2018, 4, 7970;
- 3dL. Gong, D. Zhang, Y. Shen, X. Wang, J. Zhang, X. Han, L. Zhang, Z. Xia, J. Catal. 2020, 390, 126–134.
- 4
- 4aB. M. Hunter, H. B. Gray, A. M. Muller, Chem. Rev. 2016, 116, 14120–14136;
- 4bX. Wang, Z. F. Cai, D. Wang, L. J. Wan, J. Am. Chem. Soc. 2019, 141, 7665–7669.
- 5Q. Xu, H. Jiang, H. Zhang, Y. Hu, C. Li, Appl. Catal. B 2019, 242, 60–66.
- 6
- 6aZ. Gao, Z. Yu, Y. Huang, X. He, X. Su, L. Xiao, Y. Yu, X. Huang, F. Luo, J. Mater. Chem. A 2020, 8, 5907–5912;
- 6bX. Feng, Z. Gao, L. Xiao, Z. Lai, F. Luo, Inorg. Chem. Front. 2020, 7, 3925–3931;
- 6cS. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy 2016, 1, 16184.
- 7M. Xiao, H. Zhang, Y. Chen, J. Zhu, L. Gao, Z. Jin, J. Ge, Z. Jiang, S. Chen, C. Liu, W. Xing, Nano Energy 2018, 46, 396–403.
- 8
- 8aK. Liu, H. Qi, R. Dong, R. Shivhare, M. Addicoat, T. Zhang, H. Sahabudeen, T. Heine, S. Mannsfeld, U. Kaiser, Z. Zheng, X. Feng, Nat. Chem. 2019, 11, 994–1000;
- 8bX. Feng, A. D. Schluter, Angew. Chem. Int. Ed. 2018, 57, 13748–13763; Angew. Chem. 2018, 130, 13942–13959;
- 8cX. Wang, P. F. She, Q. C. Zhang, SmartMat 2021, 2, 299–325.
- 9H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortés, A. P. Côté, R. E. Taylor, M. O'Keeffe, O. M. Yaghi, Science 2007, 316, 268–272.
- 10S. Lin, C. S. Diercks, Y. B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science 2015, 349, 1208–1213.
- 11D. B. Shinde, G. Sheng, X. Li, M. Ostwal, A. H. Emwas, K. W. Huang, Z. Lai, J. Am. Chem. Soc. 2018, 140, 14342–14349.
- 12H. Huang, F. Li, Y. Zhang, Y. Chen, J. Mater. Chem. A 2019, 7, 5575–5582.
- 13H. Sahabudeen, H. Qi, B. A. Glatz, D. Tranca, R. Dong, Y. Hou, T. Zhang, C. Kuttner, T. Lehnert, G. Seifert, U. Kaiser, A. Fery, Z. Zheng, X. Feng, Nat. Commun. 2016, 7, 13461.
- 14B. Zhang, H. Qin, L. Diao, N. Zhao, C. Shi, E. Liu, C. He, J. Catal. 2019, 377, 582–588.
- 15L. G. Ding, B. J. Yao, W. X. Wu, Z. G. Yu, X. Y. Wang, J. L. Kan, Y. B. Dong, Inorg. Chem. 2021, 60, 12591–12601.
- 16K. Schwanitz, U. Weiler, R. Hunger, T. Mayer, J. Phys. Chem. C 2007, 111, 849–854.
- 17M. R. Zhang, F. Hou, Z. G. Wang, S. H. Zhang, G. B. Pan, Appl. Surf. Sci. 2017, 410, 332–335.
- 18J. D. Yi, R. Xie, Z. L. Xie, G. L. Chai, T. F. Liu, R. P. Chen, Y. B. Huang, R. Cao, Angew. Chem. Int. Ed. 2020, 59, 23641–23648; Angew. Chem. 2020, 132, 23849–23856.
- 19B. Wurster, D. Grumelli, D. Hotger, R. Gutzler, K. Kern, J. Am. Chem. Soc. 2016, 138, 3623–3626.
- 20
- 20aY. Wang, B. Liu, X. Shen, H. Arandiyan, T. Zhao, Y. Li, M. Garbrecht, Z. Su, L. Han, A. Tricoli, C. Zhao, Adv. Energy Mater. 2021, 11, 2003759;
- 20bX. L. Wang, L. Z. Dong, M. Qiao, Y. J. Tang, J. Liu, Y. Li, S. L. Li, J. X. Su, Y. Q. Lan, Angew. Chem. Int. Ed. 2018, 57, 9660–9664; Angew. Chem. 2018, 130, 9808–9812;
- 20cZ. Gao, L. L. Gong, X. Q. He, X. M. Su, L. H. Xiao, F. Luo, Inorg. Chem. 2020, 59, 4995–5003.
- 21B. H. R. Suryanto, Y. Wang, R. K. Hocking, W. Adamson, C. Zhao, Nat. Commun. 2019, 10, 5599.
- 22X. H. Liu, Y. W. Yang, X. M. Liu, Q. Hao, L. M. Wang, B. Sun, J. Wu, D. Wang, Langmuir 2020, 36, 7528–7532.
- 23Z. Liang, J. Wang, P. Tang, W. Tang, L. Liu, M. Shakouri, X. Wang, J. Llorca, S. Zhao, M. Heggen, R. E. Dunin-Borkowski, A. Cabot, H. B. Wu, J. Arbiol, Appl. Catal. B 2022, 314, 121451.
- 24Z. Liang, T. Zhang, P. Cao, T. Yoshida, W. Tang, X. Wang, Y. Zuo, P. Tang, M. Heggen, R. E. Dunin-Borkowski, J. R. Morante, A. Cabot, M. Yamashita, J. Arbiol, Chem. Eng. J. 2022, 442, 136129.
- 25J. Cao, K. Wang, J. Chen, C. Lei, B. Yang, Z. Li, L. Lei, Y. Hou, K. Ostrikov, Nano-Micro Lett. 2019, 11, 67.
- 26
- 26aS. N. Terekhov, S. G. Kruglik, V. L. Malinovskii, V. A. Galievsky, V. S. Chirvony, P.-Y. Turpin, J. Raman Spectrosc. 2003, 34, 868–881;
- 26bL. M. Ferreira, D. Grasseschi, M. S. Santos, P. R. Martins, I. G. Gutz, A. M. Ferreira, K. Araki, H. E. Toma, L. Angnes, Langmuir 2015, 31, 4351–4360.
- 27
- 27aC. Hu, Y. Hu, C. Fan, L. Yang, Y. Zhang, H. Li, W. Xie, Angew. Chem. Int. Ed. 2021, 60, 19774–19778; Angew. Chem. 2021, 133, 19927–19931;
- 27bJ. Huang, Y. Li, Y. Zhang, G. Rao, C. Wu, Y. Hu, X. Wang, R. Lu, Y. Li, J. Xiong, Angew. Chem. Int. Ed. 2019, 58, 17458–17464; Angew. Chem. 2019, 131, 17619–17625.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.