Precise Control of Selenium Functionalization in Non-Fullerene Acceptors Enabling High-Efficiency Organic Solar Cells
Dr. Jianquan Zhang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
These authors contributed equally to this work.
Search for more papers by this authorSiwei Luo
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
These authors contributed equally to this work.
Search for more papers by this authorHeng Zhao
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shannxi Province China
Search for more papers by this authorXiaoyun Xu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorXinhui Zou
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorAo Shang
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorJiaen Liang
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorDr. Fujin Bai
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorDr. Yuzhong Chen
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorProf. Kam Sing Wong
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorProf. Zaifei Ma
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorProf. Wei Ma
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shannxi Province China
Search for more papers by this authorCorresponding Author
Prof. Huawei Hu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
Search for more papers by this authorCorresponding Author
Prof. Yiwang Chen
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, Jiangxi Province China
Search for more papers by this authorCorresponding Author
Prof. He Yan
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, Guangdong Province China
Search for more papers by this authorDr. Jianquan Zhang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
These authors contributed equally to this work.
Search for more papers by this authorSiwei Luo
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
These authors contributed equally to this work.
Search for more papers by this authorHeng Zhao
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shannxi Province China
Search for more papers by this authorXiaoyun Xu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorXinhui Zou
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorAo Shang
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorJiaen Liang
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorDr. Fujin Bai
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorDr. Yuzhong Chen
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorProf. Kam Sing Wong
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorProf. Zaifei Ma
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorProf. Wei Ma
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shannxi Province China
Search for more papers by this authorCorresponding Author
Prof. Huawei Hu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
Search for more papers by this authorCorresponding Author
Prof. Yiwang Chen
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, Jiangxi Province China
Search for more papers by this authorCorresponding Author
Prof. He Yan
Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, Guangdong Province China
Search for more papers by this authorAbstract
Central π-core engineering of non-fullerene small molecule acceptors (NF-SMAs) is effective in boosting the performance of organic solar cells (OSCs). Especially, selenium (Se) functionalization of NF-SMAs is considered a promising strategy but the structure-performance relationship remains unclear. Here, we synthesize two isomeric alkylphenyl-substituted selenopheno[3,2-b]thiophene-based NF-SMAs named mPh4F-TS and mPh4F-ST with different substitution positions, and contrast them with the thieno[3,2-b]thiophene-based analogue, mPh4F-TT. When placing Se atoms at the outer positions of the π-core, mPh4F-TS shows the most red-shifted absorption and compact molecular stacking. The PM6 : mPh4F-TS devices exhibit excellent absorption, high charge carrier mobility, and reduced energy loss. Consequently, PM6 : mPh4F-TS achieves more balanced photovoltaic parameters and yields an efficiency of 18.05 %, which highlights that precisely manipulating selenium functionalization is a practicable way toward high-efficiency OSCs.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202206930-sup-0001-misc_information.pdf4.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. Yan, S. Barlow, Z. Wang, H. Yan, A. K. Y. Jen, S. R. Marder, X. Zhan, Nat. Rev. Mater. 2018, 3, 18003;
- 1bJ. Q. Zhang, H. S. Tan, X. G. Guo, A. Facchetti, H. Yan, Nat. Energy 2018, 3, 720–731;
- 1cQ. Yue, W. Liu, X. Zhu, J. Am. Chem. Soc. 2020, 142, 11613–11628;
- 1dW. Liu, X. Xu, J. Yuan, M. Leclerc, Y. P. Zou, Y. F. Li, ACS Energy Lett. 2021, 6, 598–608.
- 2
- 2aA. Armin, W. Li, O. J. Sandberg, Z. Xiao, L. Ding, J. Nelson, D. Neher, K. Vandewal, S. Shoaee, T. Wang, H. Ade, T. Heumüller, C. Brabec, P. Meredith, Adv. Energy Mater. 2021, 11, 2003570;
- 2bY. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 2015, 27, 1170–1174;
- 2cJ. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140–1151;
- 2dJ. Yuan, T. Huang, P. Cheng, Y. Zou, H. Zhang, J. L. Yang, S. Y. Chang, Z. Zhang, W. Huang, R. Wang, D. Meng, F. Gao, Y. Yang, Nat. Commun. 2019, 10, 570.
- 3
- 3aC. Sun, F. Pan, H. Bin, J. Zhang, L. Xue, B. Qiu, Z. Wei, Z. G. Zhang, Y. Li, Nat. Commun. 2018, 9, 743;
- 3bB. B. Fan, X. Y. Du, F. Liu, W. K. Zhong, L. Ying, R. H. Xie, X. F. Tang, K. An, J. M. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, Y. Cao, Nat. Energy 2018, 3, 1051–1058;
- 3cQ. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, L. Ding, Sci. Bull. 2020, 65, 272–275;
- 3dH. Sun, H. Yu, Y. Shi, J. Yu, Z. Peng, X. Zhang, B. Liu, J. Wang, R. Singh, J. Lee, Y. Li, Z. Wei, Q. Liao, Z. Kan, L. Ye, H. Yan, F. Gao, X. Guo, Adv. Mater. 2020, 32, 2004183;
- 3eC. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 2021, 6, 605–613;
- 3fY. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Adv. Mater. 2020, 32, 1908205.
- 4
- 4aY. B. Lin, M. I. Nugraha, Y. Firdaus, A. D. Scaccabarozzi, F. Anies, A. H. Emwas, E. Yengel, X. P. Zheng, J. K. Liu, W. Wahyudi, E. Yarali, H. Faber, O. M. Bakr, L. Tsetseris, M. Heeney, T. D. Anthopoulos, ACS Energy Lett. 2020, 5, 3663–3671;
- 4bW. Feng, S. Wu, H. Chen, L. Meng, F. Huang, H. Liang, J. Zhang, Z. Wei, X. Wan, C. Li, Z. Yao, Y. Chen, Adv. Energy Mater. 2022, 12, 2104060;
- 4cS. Bao, H. Yang, H. Fan, J. Zhang, Z. Wei, C. Cui, Y. Li, Adv. Mater. 2021, 33, 2105301;
- 4dL. Zhan, S. Li, Y. Li, R. Sun, J. Min, Z. Bi, W. Ma, Z. Chen, G. Zhou, H. Zhu, M. Shi, L. Zuo, H. Chen, Joule 2022, 6, 662–675;
- 4eJ. Deng, B. Huang, W. Li, L. Zhang, S. Y. Jeong, S. Huang, S. Zhang, F. Wu, X. Xu, G. Zou, H. Y. Woo, Y. Chen, L. Chen, Angew. Chem. Int. Ed. 2022, 61, e202202177; Angew. Chem. 2022, 134, e202202177;
- 4fM. Zhang, L. Zhu, G. Zhou, T. Hao, C. Qiu, Z. Zhao, Q. Hu, B. W. Larson, H. Zhu, Z. Ma, Z. Tang, W. Feng, Y. Zhang, T. P. Russell, F. Liu, Nat. Commun. 2021, 12, 309;
- 4gY. Cui, Y. Xu, H. Yao, P. Bi, L. Hong, J. Zhang, Y. Zu, T. Zhang, J. Qin, J. Ren, Z. Chen, C. He, X. Hao, Z. Wei, J. Hou, Adv. Mater. 2021, 33, 2102420.
- 5
- 5aY. Zhong, M. Causa, G. J. Moore, P. Krauspe, B. Xiao, F. Gunther, J. Kublitski, R. Shivhare, J. Benduhn, E. BarOr, S. Mukherjee, K. M. Yallum, J. Rehault, S. C. B. Mannsfeld, D. Neher, L. J. Richter, D. M. DeLongchamp, F. Ortmann, K. Vandewal, E. Zhou, N. Banerji, Nat. Commun. 2020, 11, 833;
- 5bS. Karuthedath, J. Gorenflot, Y. Firdaus, N. Chaturvedi, C. S. P. De Castro, G. T. Harrison, J. I. Khan, A. Markina, A. H. Balawi, T. A. D. Pena, W. Liu, R. Z. Liang, A. Sharma, S. H. K. Paleti, W. Zhang, Y. Lin, E. Alarousu, D. H. Anjum, P. M. Beaujuge, S. De Wolf, I. McCulloch, T. D. Anthopoulos, D. Baran, D. Andrienko, F. Laquai, Nat. Mater. 2021, 20, 378–384;
- 5cL. Ye, H. Hu, M. Ghasemi, T. Wang, B. A. Collins, J. H. Kim, K. Jiang, J. H. Carpenter, H. Li, Z. Li, T. McAfee, J. Zhao, X. Chen, J. L. Y. Lai, T. Ma, J. L. Bredas, H. Yan, H. Ade, Nat. Mater. 2018, 17, 253–260;
- 5dM. Ghasemi, N. Balar, Z. Peng, H. Hu, Y. Qin, T. Kim, J. J. Rech, M. Bidwell, W. Mask, I. McCulloch, W. You, A. Amassian, C. Risko, B. T. O'Connor, H. Ade, Nat. Mater. 2021, 20, 525–532;
- 5eT. A. Dela Peña, J. I. Khan, N. Chaturvedi, R. Ma, Z. Xing, J. Gorenflot, A. Sharma, F. L. Ng, D. Baran, H. Yan, F. Laquai, K. S. Wong, ACS Energy Lett. 2021, 6, 3408–3416.
- 6J. Song, F. Cai, C. Zhu, H. Chen, Q. Wei, D. Li, C. Zhang, R. Zhang, J. Yuan, H. Peng, S. K. So, Y. Zou, Solar RRL 2021, 5, 2100281.
- 7
- 7aW. Liu, S. Sun, L. Zhou, Y. Cui, W. Zhang, J. Hou, F. Liu, S. Xu, X. Zhu, Angew. Chem. Int. Ed. 2022, 61, e202116111; Angew. Chem. 2022, 134, e202116111;
- 7bW. Liu, S. Sun, S. Xu, H. Zhang, Y. Zheng, Z. Wei, X. Zhu, Adv. Mater. 2022, 34, 2200337;
- 7cX. Li, S. Luo, H. Sun, H. H.-Y. Sung, H. Yu, T. Liu, Y. Xiao, F. Bai, M. Pan, X. Lu, I. D. Williams, X. Guo, Y. Li, H. Yan, Energy Environ. Sci. 2021, 14, 4555–4563.
- 8
- 8aZ. Zhou, W. Liu, G. Zhou, M. Zhang, D. Qian, J. Zhang, S. Chen, S. Xu, C. Yang, F. Gao, H. Zhu, F. Liu, X. Zhu, Adv. Mater. 2020, 32, 1906324;
- 8bR. Wang, J. Yuan, R. Wang, G. Han, T. Huang, W. Huang, J. Xue, H. C. Wang, C. Zhang, C. Zhu, P. Cheng, D. Meng, Y. Yi, K. H. Wei, Y. Zou, Y. Yang, Adv. Mater. 2019, 31, 1904215.
- 9
- 9aC. Zhang, J. Yuan, J. K. W. Ho, J. Song, H. Zhong, Y. Xiao, W. Liu, X. Lu, Y. Zou, S. K. So, Adv. Funct. Mater. 2021, 31, 2101627;
- 9bZ. Luo, R. Ma, Y. Xiao, T. Liu, H. Sun, M. Su, Q. Guo, G. Li, W. Gao, Y. Chen, Y. Zou, X. Guo, M. Zhang, X. Lu, H. Yan, C. Yang, Small 2020, 16, 2001942.
- 10B. Fan, F. Lin, X. Wu, Z. Zhu, A. K. Jen, Acc. Chem. Res. 2021, 54, 3906–3916.
- 11
- 11aY. X. Li, L. Zhong, F. P. Wu, Y. Yuan, H. J. Bin, Z. Q. Jiang, Z. J. Zhang, Z. G. Zhang, Y. F. Li, L. S. Liao, Energy Environ. Sci. 2016, 9, 3429–3435;
- 11bC. Li, J. Song, Y. Cai, G. Han, W. Zheng, Y. Yi, H. S. Ryu, H. Y. Woo, Y. Sun, J. Energy Chem. 2020, 40, 144–150.
- 12
- 12aZ. Zhang, Y. Li, G. Cai, Y. Zhang, X. Lu, Y. Lin, J. Am. Chem. Soc. 2020, 142, 18741–18745;
- 12bF. Qi, K. Jiang, F. Lin, Z. Wu, H. Zhang, W. Gao, Y. Li, Z. Cai, H. Y. Woo, Z. Zhu, A. K. Y. Jen, ACS Energy Lett. 2021, 6, 9–15;
- 12cF. Qi, L. O. Jones, K. Jiang, S. H. Jang, W. Kaminsky, J. Oh, H. Zhang, Z. Cai, C. Yang, K. L. Kohlstedt, G. C. Schatz, F. R. Lin, T. J. Marks, A. K. Jen, Mater. Horiz. 2022, 9, 403–410.
- 13
- 13aJ.-L. Wang, K.-K. Liu, L. Hong, G.-Y. Ge, C. Zhang, J. Hou, ACS Energy Lett. 2018, 3, 2967–2976;
- 13bF. Lin, K. Jiang, W. Kaminsky, Z. Zhu, A. K. Jen, J. Am. Chem. Soc. 2020, 142, 15246–15251;
- 13cS.-S. Wan, X. Xu, J.-L. Wang, G.-Z. Yuan, Z. Jiang, G.-Y. Ge, H.-R. Bai, Z. Li, Q. Peng, J. Mater. Chem. A 2019, 7, 11802–11813;
- 13dK. K. Liu, H. Huang, J. L. Wang, S. S. Wan, X. Zhou, H. R. Bai, W. Ma, Z. G. Zhang, Y. Li, ACS Appl. Mater. Interfaces 2021, 13, 50163–50175.
- 14
- 14aC. Yang, Q. An, H. R. Bai, H. F. Zhi, H. S. Ryu, A. Mahmood, X. Zhao, S. Zhang, H. Y. Woo, J. L. Wang, Angew. Chem. Int. Ed. 2021, 60, 19241–19252; Angew. Chem. 2021, 133, 19390–19401;
- 14bC. Tang, X. Ma, J. Y. Wang, X. Zhang, R. Liao, Y. Ma, P. Wang, P. Wang, T. Wang, F. Zhang, Q. Zheng, Angew. Chem. Int. Ed. 2021, 60, 19314–19323; Angew. Chem. 2021, 133, 19463–19472;
- 14cG. Chai, J. Zhang, M. Pan, Z. Wang, J. Yu, J. Liang, H. Yu, Y. Chen, A. Shang, X. Liu, F. Bai, R. Ma, Y. Chang, S. Luo, A. Zeng, H. Zhou, K. Chen, F. Gao, H. Ade, H. Yan, ACS Energy Lett. 2020, 5, 3415–3425;
- 14dH. Yu, Z. Qi, J. Zhang, Z. Wang, R. Sun, Y. Chang, H. Sun, W. Zhou, J. Min, H. Ade, H. Yan, J. Mater. Chem. A 2020, 8, 23756–23765.
- 15F. Lin, L. J. Zuo, K. Gao, M. Zhang, S. B. Jo, F. Liu, A. K. Jen, Chem. Mater. 2019, 31, 6770–6778.
- 16
- 16aG. D. Chai, Y. Chang, Z. X. Peng, Y. Y. Jia, X. H. Zou, D. Yu, H. Yu, Y. Z. Chen, P. C. Y. Chow, K. S. Wong, J. Q. Zhang, H. Ade, L. W. Yang, C. L. Zhan, Nano Energy 2020, 76, 105087;
- 16bG. Chai, Y. Chang, J. Zhang, X. Xu, L. Yu, X. Zou, X. Li, Y. Chen, S. Luo, B. Liu, F. Bai, Z. Luo, H. Yu, J. Liang, T. Liu, K. S. Wong, H. Zhou, Q. Peng, H. Yan, Energy Environ. Sci. 2021, 14, 3469–3479;
- 16cY. Chang, J. Zhang, Y. Chen, G. Chai, X. Xu, L. Yu, R. Ma, H. Yu, T. Liu, P. Liu, Q. Peng, H. Yan, Adv. Energy Mater. 2021, 11, 2100079;
- 16dJ. Q. Zhang, F. J. Bai, I. Angunawela, X. Y. Xu, S. W. Luo, C. Li, G. D. Chai, H. Yu, Y. Z. Chen, H. W. Hu, Z. F. Ma, H. Ade, H. Yan, Adv. Energy Mater. 2021, 11, 2102596;
- 16eP. Tan, L. Liu, Z. Y. Chen, H. Lai, Y. Zhu, H. Chen, N. Zheng, Y. Zhang, F. He, Adv. Funct. Mater. 2021, 31, 2106524;
- 16fK. Chong, X. Xu, H. Meng, J. Xue, L. Yu, W. Ma, Q. Peng, Adv. Mater. 2022, 34, 2109516.
- 17
- 17aA. Classen, C. L. Chochos, L. Luer, V. G. Gregoriou, J. Wortmann, A. Osvet, K. Forberich, I. McCulloch, T. Heumuller, C. J. Brabec, Nat. Energy 2020, 5, 711–719;
- 17bL. Qin, X. Liu, X. Zhang, J. Yu, L. Yang, F. Zhao, M. Huang, K. Wang, X. Wu, Y. Li, H. Chen, K. Wang, J. Xia, X. Lu, F. Gao, Y. Yi, H. Huang, Angew. Chem. Int. Ed. 2020, 59, 15043–15049; Angew. Chem. 2020, 132, 15153–15159.
- 18S. M. Swick, W. Zhu, M. Matta, T. J. Aldrich, A. Harbuzaru, J. T. Lopez Navarrete, R. Ponce Ortiz, K. L. Kohlstedt, G. C. Schatz, A. Facchetti, F. S. Melkonyan, T. J. Marks, Proc. Natl. Acad. Sci. USA 2018, 115, E8341–E8348.
- 19H. Q. Liu, M. Y. Li, H. B. Wu, J. Wang, Z. F. Ma, Z. Tang, J. Mater. Chem. A 2021, 9, 19770–19777.
- 20
- 20aC. J. Zhang, S. Mahadevan, J. Yuan, J. K. W. Ho, Y. X. Gao, W. Liu, H. Zhong, H. Yan, Y. P. Zou, S. W. Tsang, S. K. So, ACS Energy Lett. 2022, 7, 1971–1979;
- 20bJ. Yuan, C. J. Zhang, B. B. Qiu, W. Liu, S. K. So, M. Mainville, M. Leclerc, S. Shoaee, D. Neher, Y. P. Zou, Energy Environ. Sci. 2022, 15, 2806–2818.
- 21S. Liu, J. Yuan, W. Y. Deng, M. Luo, Y. Xie, Q. B. Liang, Y. P. Zou, Z. C. He, H. B. Wu, Y. Cao, Nat. Photonics 2020, 14, 300–305.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.