Polyacrylonitrile-Coordinated Perovskite Solar Cell with Open-Circuit Voltage Exceeding 1.23 V
Chen Chen
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorCorresponding Author
Xiao Wang
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorZhipeng Li
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorXiaofan Du
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorZhipeng Shao
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorXiuhong Sun
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorDachang Liu
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCaiyun Gao
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorLianzheng Hao
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorQiangqiang Zhao
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorBingqian Zhang
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorProf. Guanglei Cui
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
China School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Shuping Pang
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorChen Chen
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorCorresponding Author
Xiao Wang
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorZhipeng Li
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorXiaofan Du
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorZhipeng Shao
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorXiuhong Sun
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorDachang Liu
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCaiyun Gao
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorLianzheng Hao
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorQiangqiang Zhao
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorBingqian Zhang
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Search for more papers by this authorProf. Guanglei Cui
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
China School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Shuping Pang
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorAbstract
In solution-processed organic–inorganic halide perovskite films, halide-anion related defects including halide vacancies and interstitial defects can easily form at the surfaces and grain boundaries. The uncoordinated lead cations produce defect levels within the band gap, and the excess iodides disturb the interfacial carrier transport. Thus these defects lead to severe nonradiative recombination, hysteresis, and large energy loss in the device. Herein, polyacrylonitrile (PAN) was introduced to passivate the uncoordinated lead cations in the perovskite films. The coordinating ability of cyano group was found to be stronger than that of the normally used carbonyl groups, and the strong coordination could reduce the I/Pb ratio at the film surface. With the PAN perovskite film, the device efficiency improved from 21.58 % to 23.71 % and the open-circuit voltage from 1.12 V to 1.23 V, the ion migration activation energy increased, and operational stability improved.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202113932-sup-0001-misc_information.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 12021, https://www.nrel.gov/pv/cell-efficiency.html.
- 2
- 2aA. N. Cho, N. G. Park, ChemSusChem 2017, 10, 3687–3704;
- 2bC. B. Z. Ni, Y. Liu, Q. Jiang, W.-Q. Wu, S. Chen, X. Dai, B. Chen, B. Hartweg, Z. Yu, Z. Holman, J. Huang, Science 2020, 367, 1352–1358.
- 3Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui, H. Chen, X. Yang, L. Han, Science 2019, 365, 687–691.
- 4B. Chen, P. N. Rudd, S. Yang, Y. Yuan, J. Huang, Chem. Soc. Rev. 2019, 48, 3842–3867.
- 5F. Gao, Y. Zhao, X. Zhang, J. You, Adv. Energy Mater. 2020, 10, 1902650.
- 6L. Fu, H. Li, L. Wang, R. Yin, B. Li, L. Yin, Energy Environ. Sci. 2020, 13, 4017–4056.
- 7J. Chen, N.-G. Park, ACS Energy Lett. 2020, 5, 2742–2786.
- 8A. R. b Mohd Yusoff, M. Vasilopoulou, D. G. Georgiadou, L. C. Palilis, A. Abate, M. K. Nazeeruddin, Energy Environ. Sci. 2021, 14, 2906–2953.
- 9
- 9aS. Tan, I. Yavuz, M. H. Weber, T. Huang, C.-H. Chen, R. Wang, H.-C. Wang, J. H. Ko, S. Nuryyeva, J. Xue, Y. Zhao, K.-H. Wei, J.-W. Lee, Y. Yang, Joule 2020, 4, 2426–2442;
- 9bK. Ma, H. R. Atapattu, Q. Zhao, Y. Gao, B. P. Finkenauer, K. Wang, K. Chen, S. M. Park, A. H. Coffey, C. Zhu, L. Huang, K. R. Graham, J. Mei, L. Dou, Adv. Mater. 2021, 33, 2100791.
- 10
- 10aM. Kim, G.-H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee, D. Huh, H. Lee, S. K. Kwak, J. Y. Kim, D. S. Kim, Joule 2019, 3, 2179–2192;
- 10bJ. Chen, S. G. Kim, N. G. Park, Adv. Mater. 2018, 30, 1801948;
- 10cW. J. Nimens, S. J. Lefave, L. Flannery, J. Ogle, D. M. Smilgies, M. T. Kieber-Emmons, L. Whittaker-Brooks, Angew. Chem. Int. Ed. 2019, 58, 13912–13921; Angew. Chem. 2019, 131, 14050–14059;
- 10dY. Ma, Y. Cheng, X. Xu, M. Li, C. Zhang, S. H. Cheung, Z. Zeng, D. Shen, Y. M. Xie, K. L. Chiu, F. Lin, S. K. So, C. S. Lee, S. W. Tsang, Adv. Funct. Mater. 2020, 30, 2006802.
- 11L. Zuo, H. Guo, D. W. deQuilettes, S. Jariwala, N. De Marco, S. Dong, R. DeBlock, D. S. Ginger, B. Dunn, M. Wang, Y. Yang, Sci. Adv. 2017, 3, e1700106.
- 12R. Wang, J. Xue, L. Meng, J.-W. Lee, Z. Zhao, P. Sun, L. Cai, T. Huang, Z. Wang, Z.-K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. Yuan, Y. Huang, Y. Yang, Joule 2019, 3, 1464–1477.
- 13L. Zhu, X. Zhang, M. Li, X. Shang, K. Lei, B. Zhang, C. Chen, S. Zheng, H. Song, J. Chen, Adv. Energy Mater. 2021, 11, 2100529.
- 14C. C. Zhang, Z. K. Wang, S. Yuan, R. Wang, M. Li, M. F. Jimoh, L. S. Liao, Y. Yang, Adv. Mater. 2019, 31, 1902222.
- 15
- 15aM. Kim, S. G. Motti, R. Sorrentino, A. Petrozza, Energy Environ. Sci. 2018, 11, 2609–2619;
- 15bY. Cai, J. Cui, M. Chen, M. Zhang, Y. Han, F. Qian, H. Zhao, S. Yang, Z. Yang, H. Bian, T. Wang, K. Guo, M. Cai, S. Dai, Z. Liu, S. Liu, Adv. Funct. Mater. 2021, 31, 2005776.
- 16
- 16aS. Wang, B. Yang, J. Han, Z. He, T. Li, Q. Cao, J. Yang, J. Suo, X. Li, Z. Liu, S. Liu, C. Tang, A. Hagfeldt, Energy Environ. Sci. 2020, 13, 5068–5079;
- 16bK. Wang, L. Zheng, T. Zhu, L. Liu, M. L. Becker, X. Gong, Nano Energy 2020, 67, 104229.
- 17D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, Shaik M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, Nat. Energy 2016, 1, 16142.
- 18Z. Liu, F. Cao, M. Wang, M. Wang, L. Li, Angew. Chem. Int. Ed. 2020, 59, 4161–4167; Angew. Chem. 2020, 132, 4190–4196.
- 19R. Chen, Y. Wang, S. Nie, H. Shen, Y. Hui, J. Peng, B. Wu, J. Yin, J. Li, N. Zheng, J. Am. Chem. Soc. 2021, 143, 10624–10632.
- 20Z. Xu, D. Lu, F. Liu, H. Lai, X. Wan, X. Zhang, Y. Liu, Y. Chen, ACS Nano 2020, 14, 4871–4881.
- 21W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, Science 2017, 356, 1376–1379.
- 22S. Zhang, A. Hao, Z. Liu, J. G. Park, R. Liang, Nano Lett. 2019, 19, 3871–3877.
- 23
- 23aX. Zhu, M. Du, J. Feng, H. Wang, Z. Xu, L. Wang, S. Zuo, C. Wang, Z. Wang, C. Zhang, X. Ren, S. Priya, D. Yang, S. F. Liu, Angew. Chem. Int. Ed. 2021, 60, 4238–4244; Angew. Chem. 2021, 133, 4284–4290;
- 23bB. E. Buitendach, E. Erasmus, M. Landman, J. W. Niemantsverdriet, J. C. Swarts, Inorg. Chem. 2016, 55, 1992–2000.
- 24Y. Zong, Y. Zhou, Y. Zhang, Z. Li, L. Zhang, M.-G. Ju, M. Chen, S. Pang, X. C. Zeng, N. P. Padture, Chem 2018, 4, 1404–1415.
- 25J. Zhao, Y. Deng, H. Wei, X. Zheng, Z. Yu, Y. Shao, Jeffrey E. Shield, J. Huang, Sci. Adv. 2017, 3, eaao5616.
- 26C. Chen, F. Li, L. Zhu, Z. Shen, Y. Weng, Q. Lou, F. Tan, G. Yue, Q. Huang, M. Wang, Nano Energy 2020, 68, 104313.
- 27Q. Lou, Y. Han, C. Liu, K. Zheng, J. Zhang, X. Chen, Q. Du, C. Chen, Z. Ge, Adv. Energy Mater. 2021, 11, 2101416.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.