Optical Cell Tagging for Spatially Resolved Single-Cell RNA Sequencing
Qi Tang
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
These authors contributed equally to this work.
Search for more papers by this authorLu Liu
Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry and Molecular Engineering, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Science, and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871 China
These authors contributed equally to this work.
Search for more papers by this authorYilan Guo
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorXu Zhang
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorShaoran Zhang
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorYan Jia
Renal Division, Peking University First Hospital, Beijing, 100034 China
Institute of Nephrology, Key Laboratory of CKD Prevention and Treatment of Ministry of Education of China, Peking University, Beijing, 100871 China
Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, 100730 China
Search for more papers by this authorYifei Du
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorBo Cheng
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Prof. Li Yang
Renal Division, Peking University First Hospital, Beijing, 100034 China
Institute of Nephrology, Key Laboratory of CKD Prevention and Treatment of Ministry of Education of China, Peking University, Beijing, 100871 China
Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, 100730 China
Search for more papers by this authorCorresponding Author
Prof. Yanyi Huang
Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry and Molecular Engineering, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Science, and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Prof. Xing Chen
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorQi Tang
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
These authors contributed equally to this work.
Search for more papers by this authorLu Liu
Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry and Molecular Engineering, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Science, and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871 China
These authors contributed equally to this work.
Search for more papers by this authorYilan Guo
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorXu Zhang
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorShaoran Zhang
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorYan Jia
Renal Division, Peking University First Hospital, Beijing, 100034 China
Institute of Nephrology, Key Laboratory of CKD Prevention and Treatment of Ministry of Education of China, Peking University, Beijing, 100871 China
Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, 100730 China
Search for more papers by this authorYifei Du
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorBo Cheng
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Prof. Li Yang
Renal Division, Peking University First Hospital, Beijing, 100034 China
Institute of Nephrology, Key Laboratory of CKD Prevention and Treatment of Ministry of Education of China, Peking University, Beijing, 100871 China
Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, 100730 China
Search for more papers by this authorCorresponding Author
Prof. Yanyi Huang
Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry and Molecular Engineering, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Science, and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Prof. Xing Chen
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorAbstract
Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for profiling gene expression of distinct cell populations at the single-cell level. However, the information of the positions of cells within the multicellular samples is missing in scRNA-seq datasets. To overcome this limitation, we herein develop OpTAG (optical cell tagging) as a new chemical platform for attaching functional tags onto cell surfaces in a spatially resolved manner. With OpTAG, we establish OpTAG-seq, which enables spatially resolved scRNA-seq. We apply OpTAG-seq to investigate the spatially defined transcriptional program in migrating cancer cells and identified a list of genes that are potential regulators for cancer cell migration and invasion. OpTAG-seq provides a convenient method for mapping cellular heterogeneity with spatial information within multicellular biological systems.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202113929-sup-0001-misc_information.pdf1.9 MB | Supporting Information |
ange202113929-sup-0001-TableS1.xlsx73.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. J. Burgess, Nat. Rev. Genet. 2019, 20, 317–317.
- 2O. Stegle, S. A. Teichmann, J. C. Marioni, Nat. Rev. Genet. 2015, 16, 133–145.
- 3V. Marx, Nat. Methods 2021, 18, 1–1, doi.org/10.1038/s41592-020-01042-x.
- 4S. Vickovic, G. Eraslan, F. Salmén, J. Klughammer, L. Stenbeck, D. Schapiro, T. Äijö, R. Bonneau, L. Bergenstråhle, J. F. Navarro, J. Gould, G. K. Griffin, Å. Borg, M. Ronaghi, J. Frisén, J. Lundeberg, A. Regev, P. L. Ståhl, Nat. Methods 2019, 16, 987–990.
- 5S. G. Rodriques, R. R. Stickels, A. Goeva, C. A. Martin, E. Murray, C. R. Vanderburg, J. Welch, L. M. Chen, F. Chen, E. Z. Macosko, Science Science 2019, 363, 1463–1467.
- 6K. H. Chen, A. N. Boettiger, J. R. Moffitt, S. Wang, X. Zhuang, Science 2015, 348, aaa6090.
- 7C. H. L. Eng, M. Lawson, Q. Zhu, R. Dries, N. Koulena, Y. Takei, J. Yun, C. Cronin, C. Karp, G. C. Yuan, L. Cai, Nature 2019, 568, 235–239.
- 8C.-T. Kuo, A. M. Thompson, M. E. Gallina, F. Ye, E. S. Johnson, W. Sun, M. Zhao, J. Yu, I.-C. Wu, B. Fujimoto, C. C. DuFort, M. A. Carlson, S. R. Hingorani, A. L. Paguirigan, J. P. Radich, D. T. Chiu, Nat. Commun. 2016, 7, 11468.
- 9L. Binan, J. Mazzaferri, K. Choquet, L.-E. Lorenzo, Y. C. Wang, E. B. Affar, Y. De Koninck, J. Ragoussis, C. L. Kleinman, S. Costantino, Nat. Commun. 2016, 7, 11636.
- 10A. M. van der Leun, M. E. Hoekstra, L. Reinalda, C. L. G. J. Scheele, M. Toebes, M. J. van de Graaff, L. Y. Y. Chen, H. Li, A. Bercovich, Y. Lubling, E. David, D. S. Thommen, A. Tanay, J. van Rheenen, I. Amit, S. I. van Kasteren, T. N. Schumacher, Nat. Commun. 2021, 12, 4995.
- 11A. M. van der Leun, M. E. Hoekstra, L. Reinalda, C. L. G. J. Scheele, M. Toebes, M. J. van de Graaff, L. Y. Y. Chen, H. Li, A. Bercovich, Y. Lubling, E. David, D. S. Thommen, A. Tanay, J. van Rheenen, I. Amit, S. I. van Kasteren, T. N. Schumacher, Nat. Chem. Biol. 2021, 17, 1139–1147.
- 12S. Gnaim, D. Shabat, Acc. Chem. Res. 2014, 47, 2970–2984.
- 13P. G. McCracken, J. L. Bolton, G. R. J. Thatcher, J. Org. Chem. 1997, 62, 1820–1825.
- 14J. Liu, S. Li, N. A. Aslam, F. Zheng, B. Yang, R. Cheng, N. Wang, S. Rozovsky, P. G. Wang, Q. Wang, L. Wang, J. Am. Chem. Soc. 2019, 141, 9458–9462.
- 15J. Liu, L. Cai, W. Sun, R. Cheng, N. Wang, L. Jin, S. Rozovsky, I. B. Seiple, L. Wang, Angew. Chem. Int. Ed. 2019, 58, 18839–18843; Angew. Chem. 2019, 131, 19015–19019.
- 16H. Kashima, M. Kamiya, F. Obata, R. Kojima, S. Nakano, M. Miura, Y. Urano, Chem. Commun. 2021, 57, 5802–5805.
- 17P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, J. Wirz, Chem. Rev. 2013, 113, 119–191.
- 18K. P. Lawrence, T. Douki, R. P. E. Sarkany, S. Acker, B. Herzog, A. R. Young, Sci. Rep. 2018, 8, 12722.
- 19S. Picelli, Å. K. Björklund, O. R. Faridani, S. Sagasser, G. Winberg, R. Sandberg, Nat. Methods 2013, 10, 1096–1100.
- 20W. Hu, X. Zhang, Q. Guo, J. Yang, Y. Yang, S. Wei, X. Su, PLoS One 2019, 14, e0225466.
- 21B. C. McKay, L. J. Stubbert, C. C. Fowler, J. M. Smith, R. A. Cardamore, J. C. Spronck, Proc. Natl. Acad. Sci. USA 2004, 101, 6582–6586.
- 22L. Latonen, Y. Taya, M. Laiho, Oncogene 2001, 20, 6784–6793.
- 23R. Zhao, K. Gish, M. Murphy, Y. Yin, D. Notterman, W. H. Hoffman, E. Tom, D. H. Mack, A. J. Levine, Genes Dev. 2000, 14, 981–993.
- 24I. Tirosh, B. Izar, S. M. Prakadan, M. H. Wadsworth, D. Treacy, J. J. Trombetta, A. Rotem, C. Rodman, C. Lian, G. Murphy, M. Fallahi-Sichani, K. Dutton-Regester, J.-R. Lin, O. Cohen, P. Shah, D. Lu, A. S. Genshaft, T. K. Hughes, C. G. K. Ziegler, S. W. Kazer, A. Gaillard, K. E. Kolb, A.-C. Villani, C. M. Johannessen, A. Y. Andreev, E. M. Van Allen, M. Bertagnolli, P. K. Sorger, R. J. Sullivan, K. T. Flaherty, D. T. Frederick, J. Jané-Valbuena, C. H. Yoon, O. Rozenblatt-Rosen, A. K. Shalek, A. Regev, L. A. Garraway, Science 2016, 352, 189–196.
- 25R. K. Geyer, H. Nagasawa, J. B. Little, C. G. Maki, Cell Growth Differ. 2000, 11, 149–56.
- 26H. Yamaguchi, J. Wyckoff, J. Condeelis, Curr. Opin. Cell Biol. 2005, 17, 559–564.
- 27B. Geiger, A. Bershadsky, Curr. Opin. Cell Biol. 2001, 13, 584–592.
- 28Z. Chen, S. He, Y. Zhan, A. He, D. Fang, Y. Gong, X. Li, L. Zhou, EBioMedicine 2019, 47, 208–220.
- 29X. Wu, L. Dong, R. Zhang, K. Ying, H. Shen, Int. J. Mol. Med. 2014, 34, 585–591.
- 30D. Li, X.-F. Ni, H. Tang, J. Zhang, C. Zheng, J. Lin, C. Wang, L. Sun, B. Chen, Cancer Manag. Res. 2020, 12, 2087–2095.
- 31Y. J. Qin, T. Y. Lin, X. L. Lin, Y. Liu, W. T. Zhao, X. Y. Li, M. Lian, H. W. Chen, Y. L. Li, X. L. Zhang, D. Xiao, J. S. Jia, Y. Sun, J. Cancer 2020, 11, 4397–4405.
- 32C. Yang, S. Wang, H. Ruan, B. Li, Z. Cheng, J. He, Q. Zuo, C. Yu, H. Wang, Y. Lv, D. Gu, G. Jin, M. Yao, W. Qin, H. Jin, J. Cancer 2019, 10, 918–926.
- 33Y. Huang, X. Huang, J. Zeng, J. Lin, Front. Oncol. 2021, 11, 1–11, doi.org/10.3389/fonc.2021.667669.
- 34D. en Sun, X. Fan, Y. Shi, H. Zhang, Z. Huang, B. Cheng, Q. Tang, W. Li, Y. Zhu, J. Bai, W. Liu, Y. Li, X. Wang, X. Lei, X. Chen, Nat. Methods 2021, 18, 107–113.
- 35K. H. Hu, J. P. Eichorst, C. S. McGinnis, D. M. Patterson, E. D. Chow, K. Kersten, S. C. Jameson, Z. J. Gartner, A. A. Rao, M. F. Krummel, Nat. Methods 2020, 17, 833–843.
- 36J. Ding, X. Adiconis, S. K. Simmons, M. S. Kowalczyk, C. C. Hession, N. D. Marjanovic, T. K. Hughes, M. H. Wadsworth, T. Burks, L. T. Nguyen, J. Y. H. Kwon, B. Barak, W. Ge, A. J. Kedaigle, S. Carroll, S. Li, N. Hacohen, O. Rozenblatt-Rosen, A. K. Shalek, A.-C. Villani, A. Regev, J. Z. Levin, Nat. Biotechnol. 2020, 38, 737–746.
- 37M. Stoeckius, C. Hafemeister, W. Stephenson, B. Houck-Loomis, P. K. Chattopadhyay, H. Swerdlow, R. Satija, P. Smibert, Nat. Methods 2017, 14, 865–868.
- 38X. Chen, R. J. Miragaia, K. N. Natarajan, S. A. Teichmann, Nat. Commun. 2018, 9, 5345.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.