Fluorescence Imaging of Mitochondrial DNA Base Excision Repair Reveals Dynamics of Oxidative Stress Responses
Dr. Yong Woong Jun
Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorEddy Albarran
Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Wu Tsai Neuroscience institute, Stanford University School of Medicine, Stanford, CA, 94305 USA
Search for more papers by this authorDr. David L. Wilson
Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorProf. Dr. Jun Ding
Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Wu Tsai Neuroscience institute, Stanford University School of Medicine, Stanford, CA, 94305 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Eric T. Kool
Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorDr. Yong Woong Jun
Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorEddy Albarran
Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Wu Tsai Neuroscience institute, Stanford University School of Medicine, Stanford, CA, 94305 USA
Search for more papers by this authorDr. David L. Wilson
Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorProf. Dr. Jun Ding
Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Wu Tsai Neuroscience institute, Stanford University School of Medicine, Stanford, CA, 94305 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Eric T. Kool
Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorAbstract
Mitochondrial function in cells declines with aging and with neurodegeneration, due in large part to accumulated mutations in mitochondrial DNA (mtDNA) that arise from deficient DNA repair. However, measuring this repair activity is challenging. We employ a molecular approach for visualizing mitochondrial base excision repair (BER) activity in situ by use of a fluorescent probe (UBER) that reacts rapidly with AP sites resulting from BER activity. Administering the probe to cultured cells revealed signals that were localized to mitochondria, enabling selective observation of mtDNA BER intermediates. The probe showed elevated DNA repair activity under oxidative stress, and responded to suppression of glycosylase activity. Furthermore, the probe illuminated the time lag between the initiation of oxidative stress and the initial step of BER. Absence of MTH1 in cells resulted in elevated demand for BER activity upon extended oxidative stress, while the absence of OGG1 activity limited glycosylation capacity.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202111829-sup-0001-misc_information.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Kazak, A. Reyes, I. J. Holt, Nat. Rev. Mol. Cell Biol. 2012, 13, 659–671.
- 2E. S. Lander, Nature 2011, 470, 187–197.
- 3N. M. Druzhyna, G. L. Wilson, S. P. LeDoux, Mech. Ageing Dev. 2008, 129, 383–390.
- 4A. Trifunovic, A. Wredenberg, M. Falkenberg, J. N. Spelbrink, A. T. Rovio, C. E. Bruder, M. Bohlooly-Y, S. Gidlöf, A. Oldfors, R. Wibom, Nature 2004, 429, 417–423.
- 5K. Ishikawa, K. Takenaga, M. Akimoto, N. Koshikawa, A. Yamaguchi, H. Imanishi, K. Nakada, Y. Honma, J.-I. Hayashi, Science 2008, 320, 661–664.
- 6Y. Xu, C. K. Phoon, B. Berno, K. D′Souza, E. Hoedt, G. Zhang, T. A. Neubert, R. M. Epand, M. Ren, M. Schlame, Nat. Chem. Biol. 2016, 12, 641–647.
- 7
- 7aB. N. Ames, M. K. Shigenaga, T. M. Hagen, Proc. Natl. Acad. Sci. USA 1993, 90, 7915–7922;
- 7bL. Zhao, P. Sumberaz, Chem. Res. Toxicol. 2020, 33, 2491–2502.
- 8D. Bogenhagen, D. A. Clayton, Cell 1977, 11, 719–727.
- 9W. M. Brown, M. George, A. C. Wilson, Proc. Natl. Acad. Sci. USA 1979, 76, 1967–1971.
- 10D. L. Croteau, V. A. Bohr, J. Biol. Chem. 1997, 272, 25409–25412.
- 11B. Karahalil, B. A. Hogue, N. C. de Souza-Pinto, V. A. Bohr, FASEB J. 2002, 16, 1895–1902.
- 12T. Lindahl, Nature 1993, 362, 709–715.
- 13
- 13aN. Tretyakova, M. Goggin, D. Sangaraju, G. Janis, Chem. Res. Toxicol. 2012, 25, 2007–2035;
- 13bS. Liu, Y. Wang, Chem. Soc. Rev. 2015, 44, 7829–7854;
- 13cA. Furda, J. H. Santos, J. N. Meyer, B. Van Houten, in Methods Mol. Biol., Vol. 1105, Springer, Berlin, 2014, pp. 419–437.
- 14S. Z. Imam, B. Karahalil, B. A. Hogue, N. C. Souza-Pinto, V. A. Bohr, Neurobiol. Aging 2006, 27, 1129–1136.
- 15G. Boysen, L. B. Collins, S. Liao, A. M. Luke, B. F. Pachkowski, J. L. Watters, J. A. Swenberg, J. Chromatogr. B 2010, 878, 375–380.
- 16
- 16aM. R. Baldwin, P. J. O'Brien, Biochemistry 2009, 48, 6022–6033;
- 16bS. Ikeda, T. Biswas, R. Roy, T. Izumi, I. Boldogh, A. Kurosky, A. H. Sarker, S. Seki, S. Mitra, J. Biol. Chem. 1998, 273, 21585–21593.
- 17D. L. Wilson, E. T. Kool, J. Am. Chem. Soc. 2019, 141, 19379–19388.
- 18J. R. Fresco, O. Amosova, Annu. Rev. Biochem. 2017, 86, 461–484.
- 19
- 19aK. Kubo, H. Ide, S. S. Wallace, Y. W. Kow, Biochemistry 1992, 31, 3703–3708;
- 19bS. E. Bennett, J. Kitner, Nucleosides Nucleotides Nucleic Acids 2006, 25, 823–842;
- 19cA. G. Condie, Y. Yan, S. L. Gerson, Y. Wang, PLoS One 2015, 10, e0131330;
- 19dD. Boturyn, A. Boudali, J.-F. Constant, E. Defrancq, J. Lhomme, Tetrahedron 1997, 53, 5485–5492;
- 19eH. Atamna, I. Cheung, B. N. Ames, Proc. Natl. Acad. Sci. USA 2000, 97, 686–691.
- 20T. Wai, D. Teoli, E. A. Shoubridge, Nat. Genet. 2008, 40, 1484–1488.
- 21J. B. Stewart, P. F. Chinnery, Nat. Rev. Genet. 2015, 16, 530–542.
- 22D. Ballmaier, B. Epe, Toxicology 2006, 221, 166–171.
- 23C. Furihata, Gene Environ. 2015, 37, 21.
- 24C.-S. Lin, L.-T. Liu, L.-H. Ou, S.-C. Pan, C.-I. Lin, Y.-H. Wei, Oncol. Rep. 2018, 39, 316–330.
- 25B. van Loon, E. Markkanen, U. Hübscher, DNA Repair 2010, 9, 604–616.
- 26J. W. Hanes, D. M. Thal, K. A. Johnson, J. Biol. Chem. 2006, 281, 36241–36248.
- 27Y.-S. Lee, W. D. Kennedy, Y. W. Yin, Cell 2009, 139, 312–324.
- 28S. U. Liyanage, R. Hurren, V. Voisin, G. Bridon, X. Wang, C. Xu, N. MacLean, T. P. Siriwardena, M. Gronda, D. Yehudai, Blood 2017, 129, 2657–2666.
- 29S. Cadenas, Biochim. Biophys. Acta 2018, 1859, 940–950.
- 30Y.-k. Tahara, D. Auld, D. Ji, A. A. Beharry, A. M. Kietrys, D. L. Wilson, M. Jimenez, D. King, Z. Nguyen, E. T. Kool, J. Am. Chem. Soc. 2018, 140, 2105–2114.
- 31P. Mishra, D. C. Chan, Nat. Rev. Mol. Cell Biol. 2014, 15, 634–646.
- 32
- 32aM. Martinez-Diez, G. Santamaría, Á. D. Ortega, J. M. Cuezva, PLoS One 2006, 1, e107;
- 32bH.-C. Lee, Y.-H. Wei, Int. J. Biochem. Cell Biol. 2005, 37, 822–834.
- 33M. Trinei, I. Berniakovich, P. G. Pelicci, M. Giorgio, Biochim. Biophys. Acta Bioenerg. 2006, 1757, 624–630.
- 34D. Ji, A. A. Beharry, J. M. Ford, E. T. Kool, J. Am. Chem. Soc. 2016, 138, 9005–9008.
- 35Y. Yin, F. Chen, Acta Pharm. Sin. B 2020, 10, 2259.
- 36
- 36aA. M. Fleming, C. J. Burrows, Free Radical Biol. Med. 2017, 107, 35–52;
- 36bR.-Y. Zhu, C. Majumdar, C. Khuu, M. De Rosa, P. L. Opresko, S. S. David, E. T. Kool, ACS Cent. Sci. 2020, 6, 1735–1742.
- 37C. T. Coey, A. C. Drohat, Methods Enzymol. 2017, 592, 357–376.
- 38A. G. Raetz, Y. Xie, S. Kundu, M. K. Brinkmeyer, C. Chang, S. S. David, Carcinogenesis 2012, 33, 2301–2309.
- 39D. Mangal, D. Vudathala, J.-H. Park, S. H. Lee, T. M. Penning, I. A. Blair, Chem. Res. Toxicol. 2009, 22, 788–797.
- 40
- 40aB. Van Houten, G. A. Santa-Gonzalez, M. Camargo, Curr. Opin. Toxicol. 2018, 7, 9–16;
- 40bS. Adar, J. Hu, J. D. Lieb, A. Sancar, Proc. Natl. Acad. Sci. USA 2016, 113, E2124;
- 40cM. A. Spassova, D. J. Miller, A. S. Nikolov, Oxid. Med. Cell. Longevity 2015, 764375.
- 41Y. W. Jun, H. R. Kim, Y. J. Reo, M. Dai, K. H. Ahn, Chem. Sci. 2017, 8, 7696–7704.
- 42J.-L. Yang, L. Weissman, V. A. Bohr, M. P. Mattson, DNA Repair 2008, 7, 1110–1120.
- 43Y. J. Reo, Y. W. Jun, S. W. Cho, J. Jeon, H. Roh, S. Singha, M. Dai, S. Sarkar, H. R. Kim, S. Kim, Chem. Commun. 2020, 56, 10556–10559.
- 44R. X. Santos, S. C. Correia, X. Zhu, M. A. Smith, P. I. Moreira, R. J. Castellani, A. Nunomura, G. Perry, Antioxid. Redox Signaling 2013, 18, 2444–2457.
- 45E. W. Englander, Z. Hu, A. Sharma, H. M. Lee, Z. H. Wu, G. H. Greeley, J. Neurochem. 2002, 83, 1471–1480.
- 46D. Liu, D. L. Croteau, N. Souza-Pinto, M. Pitta, J. Tian, C. Wu, H. Jiang, K. Mustafa, G. Keijzers, V. A. Bohr, J. Cereb. Blood Flow Metab. 2011, 31, 680–692.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.