Promoting CO2 Electroreduction Kinetics on Atomically Dispersed Monovalent ZnI Sites by Rationally Engineering Proton-Feeding Centers
Jiayi Chen
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorDr. Zhongjian Li
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Institute of Zhejiang University—Quzhou, Quzhou, 324000 China
Search for more papers by this authorXinyue Wang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Dr. Xiahan Sang
Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorSixing Zheng
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Dr. Shoujie Liu
Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031 China
Search for more papers by this authorDr. Bin Yang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Institute of Zhejiang University—Quzhou, Quzhou, 324000 China
Search for more papers by this authorProf. Dr. Qinghua Zhang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Institute of Zhejiang University—Quzhou, Quzhou, 324000 China
Search for more papers by this authorProf. Dr. Lecheng Lei
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Institute of Zhejiang University—Quzhou, Quzhou, 324000 China
Search for more papers by this authorProf. Dr. Liming Dai
Australian Carbon Materials Centre(A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Yang Hou
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Institute of Zhejiang University—Quzhou, Quzhou, 324000 China
Search for more papers by this authorJiayi Chen
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorDr. Zhongjian Li
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Institute of Zhejiang University—Quzhou, Quzhou, 324000 China
Search for more papers by this authorXinyue Wang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Dr. Xiahan Sang
Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorSixing Zheng
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Dr. Shoujie Liu
Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031 China
Search for more papers by this authorDr. Bin Yang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Institute of Zhejiang University—Quzhou, Quzhou, 324000 China
Search for more papers by this authorProf. Dr. Qinghua Zhang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Institute of Zhejiang University—Quzhou, Quzhou, 324000 China
Search for more papers by this authorProf. Dr. Lecheng Lei
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Institute of Zhejiang University—Quzhou, Quzhou, 324000 China
Search for more papers by this authorProf. Dr. Liming Dai
Australian Carbon Materials Centre(A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Yang Hou
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Institute of Zhejiang University—Quzhou, Quzhou, 324000 China
Search for more papers by this authorAbstract
Electrocatalytic reduction of CO2 (CO2RR) to value-added chemicals is of great significance for CO2 utilization, however the CO2RR process involving multi-electron and proton transfer is greatly limited by poor selectivity and low yield. Herein, We have developed an atomically dispersed monovalent zinc catalyst anchored on nitrogenated carbon nanosheets (Zn/NC NSs). Benefiting from the unique coordination environment and atomic dispersion, the Zn/NC NSs exhibit a superior CO2RR performance, featuring a high current density up to 50 mA cm−2 with an outstanding CO Faradaic efficiency of ≈95 %. The center ZnI atom coordinated with three N atoms and one N atom that bridges over two adjacent graphitic edges (Zn-N3+1) is identified as the catalytically active site. Experimental results reveal that the twisted Zn-N3+1 structure accelerates CO2 activation and protonation in the rate-determining step of *CO2 to *COOH, while theoretical calculations elucidate that atomically dispersed Zn-N3+1 moieties decrease the potential barriers for intermediate COOH* formation, promoting the proton-coupled CO2RR kinetics and boosting the overall catalytic performance.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202111683-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Luo, J. Zhang, M. Li, A. Züttel, ACS Catal. 2019, 9, 3783–3791.
- 2D. Yu, L. Gao, T. Sun, J. Guo, Y. Yuan, J. Zhang, M. Li, X. Li, M. Liu, C. Ma, Q. Liu, A. Pan, J. Yang, H. Huang, Nano Lett. 2021, 21, 1003–1010.
- 3P. Iyengar, M. J. Kolb, J. R. Pankhurst, F. Calle-Vallejo, R. Buonsanti, ACS Catal. 2021, 11, 4456–4463.
- 4D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, X. Bao, J. Am. Chem. Soc. 2015, 137, 4288–4291.
- 5X. Rong, H. Wang, X. Lu, R. Si, T. Lu, Angew. Chem. Int. Ed. 2020, 59, 1961–1965; Angew. Chem. 2020, 132, 1977–1981.
- 6
- 6aX. Zhang, S. Guo, K. Gandionco, A. Bond, J. Zhang, Mater. Today Adv. 2020, 7, 100074;
- 6bJ. Zeng, N. Corbin, K. Williams, K. Manthiram, ACS Catal. 2020, 10, 4326–4336.
- 7
- 7aY. Zhang, L. Jiao, W. Yang, C. Xie, H. Jiang, Angew. Chem. Int. Ed. 2021, 60, 7607–7611; Angew. Chem. 2021, 133, 7685–7689;
- 7bX. Wang, S. Ding, T. Yue, Y. Zhu, M. Fang, X. Li, G. Xiao, Y. Zhu, L. Dai, Nano Energy 2021, 82, 105689;
- 7cC. Wang, X. Hu, X. Hu, X. Liu, Q. Guan, R. Hao, Y. Liu, W. Li, Appl. Catal. B 2021, 296, 120331;
- 7dW. Wang, L. Shang, G. Chang, C. Yan, R. Shi, Y. Zhao, G. I. N. Waterhouse, D. Yang, T. Zhang, Adv. Mater. 2019, 31, e1808276;
- 7eD. Xi, J. Li, J. Low, K. Mao, R. Long, J. Li, Z. Dai, T. Shao, Y. Zhong, Y. Li, Z. Li, X. J. Loh, L. Song, E. Ye, Y. Xiong, Adv. Mater. 2021, e2104090;
- 7fX. Wang, S. Feng, W. Lu, Y. Zhao, S. Zheng, W. Zheng, X. Sang, L. Zheng, Y. Xie, Z. Li, B. Yang, L. Lei, S. Wang, Y. Hou, Adv. Funct. Mater. 2021, https://doi.org/10.1002/adfm.202104243;
- 7gC.-Z. Yuan, K. Liang, X.-M. Xia, Z. K. Yang, Y.-F. Jiang, T. Zhao, C. Lin, T. Y. Cheang, S. L. Zhong, A. W. Xu, Catal. Sci. Technol. 2019, 9, 3669–3674.
- 8
- 8aL. Ramírez-Valencia, E. Bailón-García, F. Carrasco-Marín, A. Pérez-Cadenas, Catalysts 2021, 11, 11030351;
- 8bF. Franco, C. Rettenmaier, H. Jeon, B. Cuenya, Chem. Soc. Rev. 2020, 49, 6884–6946;
- 8cZ. Shi, W. Yang, Y. Gu, T. Liao, Z. Sun, Adv. Sci. 2020, 7, 2001069.
- 9
- 9aI. Shin, I. Davis, K. Nieves-Merced, Y. Wang, S. McHardy, A. Liu, Chem. Sci. 2021, 12, 3984–3998;
- 9bE. Sousa, M. Carepo, J. Moura, Coord. Chem. Rev. 2020, 423, 213476.
- 10
- 10aY. Wang, Z. Jiang, X. Zhang, Z. Niu, Q. Zhou, X. Wang, H. Li, Z. Lin, H. Zheng, Y. Liang, ACS Appl. Mater. Interfaces 2020, 12, 33795–33802;
- 10bD. Koshy, A. Landers, D. Cullen, A. Ievlev, H. Meyer, C. Hahn, Z. Bao, T. Jaramillo, Adv. Energy Mater. 2020, 10, 2001836;
- 10cM. Zhang, D. Si, J. Yi, S. Zhao, Y. Huang, R. Cao, Small 2020, 16, e2005254.
- 11
- 11aJ. Guo, W. Sun, Appl. Catal. B 2020, 275, 119154;
- 11bM. Zhu, J. Chen, L. Huang, R. Ye, J. Xu, Y. Han, Angew. Chem. Int. Ed. 2019, 58, 6595–6599; Angew. Chem. 2019, 131, 6667–6671;
- 11cS. Dou, L. Sun, S. Xi, X. Li, T. Su, H. Fan, X. Wang, ChemSusChem 2021, 14, 2126–2132.
- 12W. Ren, X. Tan, W. Yang, C. Jia, S. Xu, K. Wang, S. Smith, C. Zhao, Angew. Chem. Int. Ed. 2019, 58, 6972–6976; Angew. Chem. 2019, 131, 7046–7050.
- 13
- 13aG. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Chem. Soc. Rev. 2021, 50, 4993–5061;
- 13bG. Giuffredi, T. Asset, Y. Liu, P. Atanassov, F. Fonzo, ACS Mater. Au 2021, 1, 6–36.
- 14
- 14aX. Wang, X. Sang, C. Dong, S. Yao, L. Shuai, J. Lu, B. Yang, Z. Li, L. Lei, M. Qiu, L. Dai, Y. Hou, Angew. Chem. Int. Ed. 2021, 60, 11959–11965; Angew. Chem. 2021, 133, 12066–12072;
- 14bX. Wang, Y. Wang, X. Sang, W. Zheng, S. Zhang, L. Shuai, B. Yang, Z. Li, J. Chen, L. Lei, N. Adli, M. Leung, M. Qiu, G. Wu, Y. Hou, Angew. Chem. Int. Ed. 2021, 60, 4192–4198; Angew. Chem. 2021, 133, 4238–4244.
- 15W. Zheng, J. Yang, H. Chen, Y. Hou, Q. Wang, M. Gu, F. He, Y. Xia, Z. Xia, Z. Li, B. Yang, L. Lei, C. Yuan, Q. He, M. Qiu, X. Feng, Adv. Funct. Mater. 2020, 30, 1907658.
- 16C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Adv. Mater. 2013, 25, 4932–4937.
- 17C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. Novoselov, D. Basko, A. Ferrari, Nano Lett. 2009, 9, 1433–1441.
- 18
- 18aE. Randviir, C. Banks, Anal. Methods 2013, 5, 1098–1115;
- 18bT. Fan, W. Ma, M. Xie, H. Liu, J. Zhang, S. Yang, P. Huang, Y. Dong, Z. Chen, X. Yi, Cell Rep. Phys. Sci. 2021, 2, 100353.
- 19W. Zheng, Y. Wang, L. Shuai, X. Wang, F. He, C. Lei, Z. Li, B. Yang, L. Lei, C. Yuan, M. Qiu, Y. Hou, X. Feng, Adv. Funct. Mater. 2021, 31, 2008146.
- 20
- 20aF. Yang, P. Song, X. Liu, B. Mei, W. Xing, Z. Jiang, L. Gu, W. Xu, Angew. Chem. Int. Ed. 2018, 57, 12303–12307; Angew. Chem. 2018, 130, 12483–12487;
- 20bY. Wu, J. Jiang, Z. Weng, M. Wang, D. Broere, Y. Zhong, G. Brudvig, Z. Feng, H. Wang, ACS Cent. Sci. 2017, 3, 847–852.
- 21S. Li, S. Zhao, X. Lu, M. Ceccato, X. M. Hu, A. Roldan, J. Catalano, M. Liu, T. Skrydstrup, K. Daasbjerg, Angew. Chem. Int. Ed. 2021, 60, 22826–22832; Angew. Chem. 2021, 133, 23008–23014.
- 22
- 22aC. Liu, Y. Wu, K. Sun, J. Fang, A. Huang, Y. Pan, W. Cheong, Z. Zhuang, Z. Zhuang, Q. Yuan, H. L. Xin, C. Zhang, J. Zhang, H. Xiao, C. Chen, Y. Li, Chem 2021, 7, 1297–1307;
- 22bS. Zhu, T. Li, W. Cai, M. Shao, ACS Energy Lett. 2019, 4, 682–689;
- 22cS. Zhu, Q. Wang, X. Qin, M. Gu, R. Tao, B. Lee, L. Zhang, Y. Yao, T. Li, M. Shao, Adv. Energy Mater. 2018, 8, 1802238.
- 23S. Sawata, M. Komiyama, K. Taira, J. Am. Chem. Soc. 1995, 117, 2357–2358.
- 24
- 24aJ. Xie, Q. Liu, Y. Huang, M. Wu, Y. Wang, J. Mater. Chem. A 2018, 6, 13952–13958;
- 24bX. Wang, J. Xie, M. Ghausi, J. Lv, Y. Huang, M. Wu, Y. Wang, J. Yao, Adv. Mater. 2019, 31, e1807807.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.