Trifluoroethanol as a Unique Additive for the Chemoselective Electrooxidation of Enamines to Access Unsymmetrically Substituted NH-Pyrroles
Mrinmay Baidya
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 West Bengal, India
Search for more papers by this authorDebabrata Maiti
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 West Bengal, India
Search for more papers by this authorCorresponding Author
Dr. Lisa Roy
Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar, 751013 India
Search for more papers by this authorCorresponding Author
Dr. Suman De Sarkar
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 West Bengal, India
Search for more papers by this authorMrinmay Baidya
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 West Bengal, India
Search for more papers by this authorDebabrata Maiti
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 West Bengal, India
Search for more papers by this authorCorresponding Author
Dr. Lisa Roy
Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar, 751013 India
Search for more papers by this authorCorresponding Author
Dr. Suman De Sarkar
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 West Bengal, India
Search for more papers by this authorAbstract
An electrochemical method for the synthesis of unsymmetrically substituted NH-pyrroles is described. The synthetic strategy comprises a challenging heterocoupling between two structurally diverse enamines via sequential chemoselective oxidation, addition, and cyclization processes. A series of aryl- and alkyl-substituted enamines were effectively cross-coupled from an equimolar mixture to synthesize various unsymmetrical pyrrole derivatives up to 84 % yield. The desired cross-coupling was achieved by tuning the oxidation potential of the enamines by utilizing a “magic effect” of the additive trifluoroethanol (TFE). Additionally, extensive computational studies reveal the unique role of TFE in promoting the heterocoupling process by regulating the activation energies of the reaction steps through H-bonding and C−H⋅⋅⋅π interactions. Importantly, the developed electrochemical protocol was found to be equally efficient for the homocoupling of enamines to form symmetric pyrroles up to 92 % yield.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202111679-sup-0001-misc_information.pdf9.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Fan, J. Peng, M. T. Hamann, J. F. Hu, Chem. Rev. 2008, 108, 264–287;
- 1bI. S. Young, P. D. Thornton, A. Thompson, Nat. Prod. Rep. 2010, 27, 1801–1839;
- 1cV. Estévez, M. Villacampa, J. C. Menendez, Chem. Soc. Rev. 2014, 43, 4633–4657;
- 1dV. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman, P. Sharma, RSC Adv. 2015, 5, 15233–15266;
- 1eJ. Bracegirdle, L. P. Robertson, P. A. Hume, M. J. Page, A. V. Sharrock, D. F. Ackerley, A. R. Carroll, R. A. Keyzers, J. Nat. Prod. 2019, 82, 2000–2008.
- 2
- 2aL. Knorr, Ber. Dtsch. Chem. Ges. 1884, 17, 2863–2870;
10.1002/cber.188401702254 Google Scholar
- 2bC. Paal, Ber. Dtsch. Chem. Ges. 1884, 17, 2756–2767;
10.1002/cber.188401702228 Google Scholar
- 2cV. Amarnath, D. C. Anthony, K. Amarnath, W. M. Valentine, L. A. Wetterau, D. G. Graham, J. Org. Chem. 1991, 56, 6924–6931;
- 2dH. Cho, R. Madden, B. Nisanci, B. Török, Green Chem. 2015, 17, 1088–1099.
- 3
- 3aA. Hantzsch, Ber. Dtsch. Chem. Ges. 1890, 23, 1474–1476;
10.1002/cber.189002301243 Google Scholar
- 3bA. W. Trautwein, R. D. Süßmuth, G. Jung, Bioorg. Med. Chem. Lett. 1998, 8, 2381–2384;
- 3cJ. Menéndez, M. Leonardi, V. Estévez, M. Villacampa, Synthesis 2019, 51, 816–828.
- 4
- 4aA.-I. Tsai, C.-P. Chuang, Tetrahedron 2006, 62, 2235–2239;
- 4bW. Liu, H. Jiang, L. Huang, Org. Lett. 2010, 12, 312–315;
- 4cM. Zhao, F. Wang, X. Li, Org. Lett. 2012, 14, 1412–1415;
- 4dP. Gao, J. Wang, Z. J. Bai, L. Shen, Y. Y. Yan, D. S. Yang, M. J. Fan, Z. H. Guan, Org. Lett. 2016, 18, 6074–6077;
- 4eE. Babaoglu, G. Hilt, Chem. Eur. J. 2020, 26, 8879–8884.
- 5Selected reports:
- 5aS. Rakshit, F. W. Patureau, F. Glorius, J. Am. Chem. Soc. 2010, 132, 9585–9587;
- 5bW. J. Humenny, P. Kyriacou, K. Sapeta, A. Karadeolian, M. A. Kerr, Angew. Chem. Int. Ed. 2012, 51, 11088–11091; Angew. Chem. 2012, 124, 11250–11253;
- 5cY. Jiang, W. C. Chan, C. M. Park, J. Am. Chem. Soc. 2012, 134, 4104–4107;
- 5dS. Michlik, R. Kempe, Nat. Chem. 2013, 5, 140–144;
- 5eT. Miura, K. Hiraga, T. Biyajima, T. Nakamuro, M. Murakami, Org. Lett. 2013, 15, 3298–3301;
- 5fL. Wang, L. Ackermann, Org. Lett. 2013, 15, 176–179;
- 5gJ. Y. Liao, P. L. Shao, Y. Zhao, J. Am. Chem. Soc. 2015, 137, 628–631;
- 5hX. Zhang, X. Xu, G. Chen, W. Yi, Org. Lett. 2016, 18, 4864–4867;
- 5iS. P. Midya, V. G. Landge, M. K. Sahoo, J. Rana, E. Balaraman, Chem. Commun. 2018, 54, 90–93;
- 5jK. Luo, S. Mao, K. He, X. Yu, J. Pan, J. Lin, Z. Shao, Y. Jin, ACS Catal. 2020, 10, 3733–3740.
- 6
- 6aG. Sun, S. Ren, X. Zhu, M. Huang, Y. Wan, Org. Lett. 2016, 18, 544–547;
- 6bB. Yiğit, N. Gürbüz, M. Yiğit, Z. Dağdeviren, İ. Özdemir, Inorg. Chim. Acta 2017, 465, 44–49;
- 6cM. K. Hunjan, S. Panday, A. Gupta, J. Bhaumik, P. Das, J. K. Laha, Chem. Rec. 2021, 21, 715–780.
- 7J. Xuan, X. D. Xia, T. T. Zeng, Z. J. Feng, J. R. Chen, L. Q. Lu, W. J. Xiao, Angew. Chem. Int. Ed. 2014, 53, 5653–5656; Angew. Chem. 2014, 126, 5759–5762.
- 8
- 8aM. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–13319;
- 8bS. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe, S. R. Waldvogel, Angew. Chem. Int. Ed. 2018, 57, 6018–6041; Angew. Chem. 2018, 130, 6124–6149;
- 8cA. Wiebe, T. Gieshoff, S. Mohle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, Angew. Chem. Int. Ed. 2018, 57, 5594–5619; Angew. Chem. 2018, 130, 5694–5721;
- 8dS. B. Beil, D. Pollok, S. R. Waldvogel, Angew. Chem. Int. Ed. 2021, 60, 14750–14759; Angew. Chem. 2021, 133, 14874–14883.
- 9
- 9aR. Francke, R. D. Little, Chem. Soc. Rev. 2014, 43, 2492–2521;
- 9bN. Sauermann, T. H. Meyer, Y. Qiu, L. Ackermann, ACS Catal. 2018, 8, 7086–7103;
- 9cS. Tang, L. Zeng, A. Lei, J. Am. Chem. Soc. 2018, 140, 13128–13135;
- 9dS. R. Waldvogel, S. Lips, M. Selt, B. Riehl, C. J. Kampf, Chem. Rev. 2018, 118, 6706–6765;
- 9eF. Wang, S. S. Stahl, Acc. Chem. Res. 2020, 53, 561–574;
- 9fY. Yuan, A. Lei, Nat. Commun. 2020, 11, 802–804.
- 10D. Koch, H. Schäfer, Angew. Chem. Int. Ed. Engl. 1973, 12, 245–246; Angew. Chem. 1973, 85, 264–265.
- 11Very recently, Chen, Pan and previously Lei have independently reported on the electrochemical methods for the synthesis of symmetrical N-alkylated pyrroles by the homocoupling of enamines, which are conceptually distant from the primary objective (heterocoupling) of this work:
- 11aX. Gao, P. Wang, Q. Wang, J. Chen, A. Lei, Green Chem. 2019, 21, 4941–4945;
- 11bZ. Chen, G. Shi, W. Tang, J. Sun, W. Wang, Eur. J. Org. Chem. 2021, 951–955;
- 11cM. Xiong, X. Liang, Y. Zhou, Y. Pan, J. Org. Chem. 2021, 86, 4986–4993.
- 12
- 12aB. Elsler, A. Wiebe, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Chem. Eur. J. 2015, 21, 12321–12325;
- 12bS. Tang, Y. Liu, A. Lei, Chem 2018, 4, 27–45;
- 12cM. Yan, Y. Kawamata, P. S. Baran, Angew. Chem. Int. Ed. 2018, 57, 4149–4155; Angew. Chem. 2018, 130, 4219–4225;
- 12dH. Wang, X. Gao, Z. Lv, T. Abdelilah, A. Lei, Chem. Rev. 2019, 119, 6769–6787;
- 12eJ. L. Röckl, D. Pollok, R. Franke, S. R. Waldvogel, Acc. Chem. Res. 2020, 53, 45–61;
- 12fY. Wang, B. Tian, M. Ding, Z. Shi, Chem. Eur. J. 2020, 26, 4297–4303;
- 12gZ. W. Hou, D. J. Liu, P. Xiong, X. L. Lai, J. Song, H. C. Xu, Angew. Chem. Int. Ed. 2021, 60, 2943–2947; Angew. Chem. 2021, 133, 2979–2983;
- 12hY. Yuan, J. Yang, A. Lei, Chem. Soc. Rev. 2021, 50, 10058–10086.
- 13
- 13aL. Schulz, M. Enders, B. Elsler, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Angew. Chem. Int. Ed. 2017, 56, 4877–4881; Angew. Chem. 2017, 129, 4955–4959;
- 13bQ. Q. Wang, Y. Y. Jiang, C. C. Zeng, B. G. Sun, Chin. J. Chem. 2019, 37, 352–358;
- 13cM. J. Luo, Y. Li, X. H. Ouyang, J. H. Li, D. L. He, Chem. Commun. 2020, 56, 2707–2710;
- 13dM. M. Hielscher, B. Gleede, S. R. Waldvogel, Electrochim. Acta 2021, 368, 137420–137428.
- 14
- 14aK. Mahanty, D. Maiti, S. De Sarkar, J. Org. Chem. 2020, 85, 3699–3708;
- 14bS. Mallick, M. Baidya, K. Mahanty, D. Maiti, S. De Sarkar, Adv. Synth. Catal. 2020, 362, 1046–1052;
- 14cD. Maiti, K. Mahanty, S. De Sarkar, Org. Lett. 2021, 23, 1742–1747.
- 15
- 15aD. Bonnet-Delpon, J.-P. Bégué, B. Crousse, Synlett 2004, 18–29;
- 15bL. Schulz, S. Waldvogel, Synlett 2019, 30, 275–286;
- 15cC. Yu, J. Sanjose-Orduna, F. W. Patureau, M. H. Perez-Temprano, Chem. Soc. Rev. 2020, 49, 1643–1652.
- 16D. Nicewicz, H. Roth, N. Romero, Synlett 2016, 27, 714–723.
- 17C. P. Seath, D. B. Vogt, Z. Xu, A. J. Boyington, N. T. Jui, J. Am. Chem. Soc. 2018, 140, 15525–15534.
- 18N. Zhou, T. Xie, L. Liu, Z. Xie, J. Org. Chem. 2014, 79, 6061–6068.
- 19
- 19aW. J. van Zeist, F. M. Bickelhaupt, Org. Biomol. Chem. 2010, 8, 3118–3127;
- 19bL. Roy, B. Ghosh, A. Paul, J. Phys. Chem. A 2017, 121, 5204–5216;
- 19cS. Shu, Z. Liu, Y. Li, Z. Ke, Y. Liu, Org. Chem. Front. 2018, 5, 2148–2157;
- 19dM. Ramirez, D. Svatunek, F. Liu, N. K. Garg, K. N. Houk, Angew. Chem. Int. Ed. 2021, 60, 14989–14997; Angew. Chem. 2021, 133, 15116–15124.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.