Quantifying Mechanical Properties of Molecular Crystals: A Critical Overview of Experimental Elastic Tensors
Dr. Peter R. Spackman
School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009 Australia
School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA, 6102 Australia
Search for more papers by this authorDr. Arnaud Grosjean
School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009 Australia
Search for more papers by this authorDr. Sajesh P. Thomas
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Århus C, Denmark
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
Search for more papers by this authorDr. Durga Prasad Karothu
Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
Search for more papers by this authorProf. Panče Naumov
Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003 USA
Search for more papers by this authorCorresponding Author
Prof. Mark A. Spackman
School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009 Australia
Search for more papers by this authorDr. Peter R. Spackman
School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009 Australia
School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA, 6102 Australia
Search for more papers by this authorDr. Arnaud Grosjean
School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009 Australia
Search for more papers by this authorDr. Sajesh P. Thomas
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Århus C, Denmark
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
Search for more papers by this authorDr. Durga Prasad Karothu
Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
Search for more papers by this authorProf. Panče Naumov
Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003 USA
Search for more papers by this authorCorresponding Author
Prof. Mark A. Spackman
School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009 Australia
Search for more papers by this authorDedicated to Professor Hans-Beat Bürgi on the occasion of his 80th birthday
Abstract
This review presents a critical and comprehensive overview of current experimental measurements of complete elastic constant tensors for molecular crystals. For a large fraction of these molecular crystals, detailed comparisons are made with elastic tensors obtained using the corrected small basis set Hartree–Fock method S-HF-3c, and these are shown to be competitive with many of those obtained from more sophisticated density functional theory plus dispersion (DFT-D) approaches. These detailed comparisons between S-HF-3c, experimental and DFT-D computed tensors make use of a novel rotation-invariant spherical harmonic description of the Young's modulus, and identify outliers among sets of independent experimental results. The result is a curated database of experimental elastic tensors for molecular crystals, which we hope will stimulate more extensive use of elastic tensor information—experimental and computational—in studies aimed at correlating mechanical properties of molecular crystals with their underlying crystal structure.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202110716-sup-0001-misc_information.pdf832.7 KB | Supporting Information |
ange202110716-sup-0001-SI.zip21.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater. 2013, 1, 011002.
- 2M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. Krishna Ande, S. van der Zwaag, J. J. Plata, C. Toher, S. Curtarolo, G. Ceder, K. A. Persson, M. Asta, Sci. Data 2015, 2, 150009.
- 3A. Jain, J. Montoya, S. Dwaraknath, N. E. R. Zimmerman, J. Dagdalen, M. Horton, P. Huck, D. Winston, S. Cholia, S. P. Ong, K. Persson, in Handbook of Materials Modeling, (Eds.: S. Yip, W. Andreoni), Springer, Berlin, 2018, pp. 1–34.
- 4C. C. Sun, in Pharmaceutical Crystals: Science and Engineering (Eds.: T. Li, A. Mattei), Wiley, Hoboken, 2019.
- 5C. Wang, C. C. Sun, CrystEngComm 2020, 22, 1149–1153.
- 6A. B. Singaraju, D. Bahl, C. Wang, D. C. Swenson, C. C. Sun, L. L. Stevens, Mol. Pharm. 2020, 17, 21–31.
- 7C. M. Reddy, R. C. Gundakaram, S. Basavoju, M. T. Kirchner, K. A. Padmanabhan, G. R. Desiraju, Chem. Commun. 2005, 3945–3947.
- 8G. R. Krishna, R. Devarapalli, G. Lal, C. M. Reddy, J. Am. Chem. Soc. 2016, 138, 13561–13567.
- 9S. P. Thomas, M. W. Shi, G. A. Koutsantonis, D. Jayatilaka, A. J. Edwards, M. Spackman, Angew. Chem. Int. Ed. 2017, 56, 8468–8472; Angew. Chem. 2017, 129, 8588–8592.
- 10S. Dey, S. Das, S. Bhunia, R. Chowdhury, A. Mondal, B. Bhattacharya, R. Devarapalli, N. Yasuda, T. Moriwaki, K. Mandal, G. D. Mukherjee, C. M. Reddy, Nat. Commun. 2019, 10, 3711.
- 11P. Naumov, S. C. Sahoo, B. A. Zakharov, E. V. Boldyreva, Angew. Chem. Int. Ed. 2013, 52, 9990–9995; Angew. Chem. 2013, 125, 10174–10179.
- 12S. C. Sahoo, S. B. Sinha, M. Kiran, U. Ramamurty, A. F. Dericioglu, C. M. Reddy, P. Naumov, J. Am. Chem. Soc. 2013, 135, 13843–13850.
- 13N. K. Nath, L. Pejov, S. M. Nichols, C. H. Hu, N. Saleh, B. Kahr, P. Naumov, J. Am. Chem. Soc. 2014, 136, 2757–2766.
- 14D. P. Karothu, J. Weston, I. T. Desta, P. Naumov, J. Am. Chem. Soc. 2016, 138, 13298–13306.
- 15C. M. Reddy, G. Krishna, S. Ghosh, CrystEngComm 2010, 12, 2296–2314.
- 16S. Varughese, M. Kiran, U. Ramamurty, G. R. Desiraju, Angew. Chem. Int. Ed. 2013, 52, 2701–2712; Angew. Chem. 2013, 125, 2765–2777.
- 17S. Saha, M. K. Mishra, C. M. Reddy, G. R. Desiraju, Acc. Chem. Res. 2018, 51, 2957–2967.
- 18B. P. A. Gabriele, C. J. Williams, M. E. Lauer, B. Derby, A. Cruz-Cabeza, CrystEngComm 2021, 23, 2027–2033.
- 19J. Nye, Physical Properties of Crystals, Clarendon Press, Oxford, 1985.
- 20R. J. Angel, J. M. Jackson, H. J. Reichmann, S. Speziale, Eur. J. Mineral. 2009, 21, 525–550.
- 21“Dynamic Methods for Measuring the Elastic Properties of Solid”: E. Papadakis, T. Lerch, in Handbook of Elastic Properties of Solids, Liquids, and Gases, Vol. I (Eds.: A. Every, W. Sachse), Academic Press, San Diego, 2001; Chapter 2, pp. 39–66.
- 22“Dynamic Methods for Measuring the Elastic Properties of Solids”: A. Migliori, T. Darling, J. Baiardo, F. Freibert, in Handbook of Elastic Properties of Solids, Liquids, and Gases, Vol. I (Eds.: A. Every, W. Sachse), Academic Press, San Diego, 2001; Chapter 10, pp. 239–262.
- 23J. Bauer, E. Haussühl, B. Winkler, D. Arbeck, Cryst. Growth Des. 2010, 10, 3132–3140.
- 24“Dynamic Methods for Measuring the Elastic Properties of Solids”: S. Haussühl, in Handbook of Elastic Properties of Solids, Liquids, and Gases, Vol. I (Eds.: A. Every, W. Sachse), Academic Press, San Diego, 2001, Chapter 16, pp. 379–391.
- 25“Dynamic Methods for Measuring the Elastic Properties of Solids”: M. Grimsditch, in Handbook of Elastic Properties of Solids, Liquids, and Gases, Vol. I (Eds.: A. Every, W. Sachse), Academic Press, San Diego, 2001, Chapter 14, pp. 331–347.
- 26J. A. Rogers, A. Maznev, K. Nelson, in Characterization of Materials, 2nd ed.(Ed.: E. Kaufmann), Wiley, Hoboken, 2012, pp. 1–17.
- 27B. Sun, J. Winey, N. Hemmi, Z. Dreger, K. Zimmerman, Y. Gupta, D. Torchinsky, K. J. Nelson, Appl. Phys. 2008, 104, 073517.
- 28S. Joshi, B. Kashyap, Acta Crystallogr 1964, 17, 629–632.
- 29B. Mukherjee, R. K. Sen, Ind. J. Pure Appl. Phys. 1965, 3, 7.
- 30S. Chandra, M. Hemkar, Acta Crystallogr. Sect. A 1973, 29, 25–28.
- 31S. Chatterjee, S. Chakraborty, Acta Crystallogr. Sect. A 1981, 37, 645–649.
- 32B. Wehinger, A. Mirone, M. Krisch, A. Bosak, Phys. Rev. Lett. 2017, 118, 035502.
- 33J. Büscher, A. Mirone, M. Stekiel, D. Spahr, W. Morgenroth, E. Haussühl, V. Milman, A. Bosak, O. Ivashko, M. von Zimmermann, A.-C. Dippel, B. Winkler, J. Appl. Crystallogr. 2021, 54, 287–294.
- 34P. A. Reynolds, J. Chem. Phys. 1973, 59, 2777–2786.
- 35G. Afanaseva, Kristallografiya 1969, 13, 892–895.
- 36M. Sanquer, C. Ecolivet, in Dynamics of Molecular Crystals (Ed.: J. Lascombe), Elsevier, Amsterdam, 1987, pp. 447–452.
- 37S. Z. Haussühl, Z. Naturforsch. A 1969, 24, 865.
- 38G. Saunders, Y. Yogurtcu, J. Macdonald, G. Pawley, Proc. R. Soc. London Ser. A 1986, 407, 325–342.
- 39S. Haussühl, Z. Kristallogr. 2001, 216, 339–353.
- 40J. R. Smyth, S. D. Jacobsen, R. M. Hazen, Rev. Mineral. Geochem. 2000, 41, 157–186.
- 41J. E. Rapp, H. D. Merchant, J. Appl. Phys. 1973, 44, 3919–3923.
- 42A. D. Fortes, S. C. Capelli, Phys. Chem. Chem. Phys. 2018, 20, 16736–16742.
- 43R. J. C. Lima, E. C. Santos-Junior, A. J. D. Moreno, P. F. Façanha-Filho, P. T. C. Freire, M. I. Yoshida, J. Therm. Anal. Calorim. 2013, 111, 627–631.
- 44E. Kiely, R. Zwane, R. Fox, A. M. Reilly, S. Guerin, CrystEngComm 2021, 23, 5697–5710.
- 45B. Winkler, V. Milman, Cryst. Growth Des. 2020, 20, 206–213.
- 46S. Grimme, J. Comput. Chem. 2006, 27, 1787–1799.
- 47S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 48A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 2009, 102, 073005.
- 49G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169–11186.
- 50S. Clark, M. Segall, C. Pickard, P. Hasnip, M. Probert, K. Refson, M. Payne, Z. Kristallogr. 2005, 220, 567–570.
- 51R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1360.
- 52A. Erba, J. Maul, B. Civalleri, Chem. Commun. 2016, 52, 1820–1823.
- 53J. Hoja, A. M. Reilly, A. Tkatchenko, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017, 7, e1294.
- 54M. Destefanis, C. Ravoux, A. Cossard, A. Erba, Minerals 2018, 9, 16.
- 55P. A. Banks, J. Maul, M. T. Mancini, A. C. Whalley, A. Erba, M. T. Ruggiero, J. Mater. Chem. C 2020, 8, 10917–10925.
- 56J. Maul, D. Ongari, S. M. Moosavi, B. Smit, A. Erba, J. Phys. Chem. Lett. 2020, 11, 8543–8548.
- 57R. Sure, S. Grimme, J. Comput. Chem. 2013, 34, 1672–1685.
- 58R. Gaillac, P. Pullumbi, F. X. Coudert, J. Phys. Condens. Matter 2016, 28, 275201.
- 59P. R. Spackman, S. P. Thomas, D. Jayatilaka, Sci. Rep. 2016, 6, 22204.
- 60“Elastic Properties of Solids: Biological, Organic Materials, Earth and Marine Sciences”: G. Day, S. Price, in Handbook of Elastic Properties of Solids, Liquids, and Gases, Vol. III (Ed.: M. Levy), Academic Press, San Diego, 2001, Chapter 1, pp. 3–50.
- 61A. Every, A. McCurdy, in Landolt-Börnstein, New Series III,. High and Low Frequency Properties of Dielectric Crystals (Ed.: D. Nelson), 1992.
- 62V. Schettino, M. Bini, Materials under Extreme Conditions: Molecular Crystals at High Pressure, Imperial College Press, London, 2013.
- 63F. Mouhat, F.-X. Coudert, Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 224104.
- 64S. Gilmour, R. A. Pethrick, D. Pugh, J. N. Sherwood, Philos. Mag. B 1993, 67, 855–868.
- 65B. Manzor, J. Daly, M. Islam, R. Pethrick, J. N. Sherwood, J. Chem. Soc. Faraday Trans. 1997, 93, 3799–3805.
- 66E. Patyk, M. Podsiadlo, A. Katrusiak, Cryst. Growth Des. 2015, 15, 5670–5674.
- 67G. De With, S. Harkema, D. Feil, Acta Crystallogr. Sect. B 1976, 32, 3178–3184.
- 68A. B. Cairns, A. L. Goodwin, Phys. Chem. Chem. Phys. 2015, 17, 20449–20465.
- 69R. Baughman, S. Stafström, C. Cui, S. Dantas, Science 1998, 279, 1522–1524.
- 70W. Miller, K. Evans, A. Marmier, Appl. Phys. Lett. 2015, 106, 231903.
- 71A. L. Goodwin, D. A. Keen, M. G. Tucker, Proc. Natl. Acad. Sci. USA 2008, 105, 18708–18713.
- 72A. B. Cairns, J. Catafesta, C. Levelut, J. Rouquette, A. van der Lee, L. Peters, A. L. Thompson, V. Dmitriev, J. Haines, A. L. Goodwin, Nat. Mater. 2013, 12, 212–216.
- 73Y. Zhao, C. Fan, C. Pei, X. Geng, G. Xing, T. Ben, S. J. Qiu, J. Am. Chem. Soc. 2020, 142, 3593–3599.
- 74S. Motherwell, J. Chisholm, J. Appl. Crystallogr. 2005, 38, 228–231.
- 75R. De Gelder, R. Wehrens, J. Hageman, J. Comput. Chem. 2001, 22, 273–289.
- 76P. Sacchi, M. Lusi, A. J. Cruz-Cabeza, E. Nauha, J. Bernstein, CrystEngComm 2020, 22, 7170–7185.
- 77W. Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig, 1928.
- 78A. Reuss, Z. Angew. Math. Mech. 1929, 9, 49–58.
- 79R. Hill, Proc. Phys. Soc. London Sect. A 1952, 65, 349–354.
- 80C. M. Kube, AIP Adv. 2016, 6, 095209.
- 81A. Marmier, Z. A. D. Lethbridge, R. I. Walton, C. W. Smith, S. C. Parker, K. E. Evans, Comput. Phys. Commun. 2010, 181, 2102–2115.
- 82R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, C. Draxl, Comput. Phys. Commun. 2013, 184, 1861–1873.
- 83R. Dye, C. J. Eckhardt, J. Chem. Phys. 1989, 91, 3624–3630.
- 84A. Bain, N. El-Korashy, S. Gilmour, R. Pethrick, J. N. Sherwood, Philos. Mag. B 1992, 66, 293–305.
- 85F. Wang, Z. Dai, Y. Gu, X. Cheng, Y. Jiang, F. Ouyang, J. Xu, X. Xu, RSC Adv. 2018, 8, 16991–16996.
- 86G. Afanaseva, K. Aleksandrov, A. Kitaigorodskii, Phys. Status Solidi 1967, 24, K61–K63.
- 87T. Danno, H. Inokuchi, Bull. Chem. Soc. Jpn. 1968, 41, 1783–1787.
- 88H. B. Huntington, S. G. Gangoli, J. L. Mills, J. Chem. Phys. 1969, 50, 3844–3849.
- 89R. C. Dye, C. J. Eckhardt, J. Chem. Phys. 1989, 90, 2090–2096.
- 90L. M. LeBlanc, A. Otero-de-la-Roza, E. R. Johnson, Cryst. Growth Des. 2016, 16, 6867–6873.
- 91A. M. Reilly, A. Tkatchenko, Phys. Rev. Lett. 2014, 113, 055701.
- 92J. C. W. Heseltine, D. W. Elliott, O. B. Wilson, J. Chem. Phys. 1964, 40, 2584–2587.
- 93L.-C. Brunel, Chem. Phys. 1979, 37, 201–210.
- 94L. L. Stevens, C. J. Eckhardt, J. Chem. Phys. 2005, 122, 174701.
- 95B. Sun, J. Winey, Y. Gupta, D. Hooks, J. Appl. Phys. 2009, 106, 053505.
- 96Q. Peng, G. Wang, G.-R. Liu, S. Grimme, S. De, J. Phys. Chem. B 2015, 119, 5896–5903.
- 97J. M. Zaug, in Eleventh International Detonation [1998] Symposium, Lawrence Livermore National Laboratory, p. 498.
- 98S. Haussühl, Acta Crystallogr. 1958, 11, 58–59.
- 99V. V. Aleksandrov, K. N. Baransky, O. I. Vasileva, T. S. Velichkina, A. N. Izrailenko, I. A. Yakovlev, Opt. Spektrosk. 1982, 52, 193–195.
- 100E. Stevens, H. Hope, Acta Crystallogr. Sect. A 1975, 31, 494–498.
- 101S. Kampermann, T. Sabine, B. Craven, R. McMullan, Acta Crystallogr. Sect. A 1995, 51, 489–497.
- 102W. Mason, Piezoelectric Crystals and Their Application to Ultrasonics, Van Nostrand, New York, 1950.
- 103S. Haussühl, Acta Crystallogr. Sect. A 1968, 24, 697–698.
- 104O. V. Kachalov, G. Dobrzhanskii, I. A. Shpilko, Kristallografiya 1972, 16, 678–680.
- 105L. Marculescu, G. Hauret, C. R. Seances Acad. Sci. Ser. B 1974, 278, 751–753.
- 106V. F. Teslenko, Kristallografiya 1968, 12, 946–948.
- 107F. Colmenero, Phys. Chem. Chem. Phys. 2019, 21, 2673–2690.
- 108D. Gerlich, S. Haussühl, J. Phys. Chem. Solids 1975, 36, 709–711.
- 109C. Wang, C. C. Sun, Mol. Pharm. 2019, 16, 1732–1741.
- 110C. Morris, Proceedings of 6th International Symposium on Detonation, Coronado, CA, 1976, 396–402.
- 111L. L. Stevens, D. E. Hooks, A. Migliori, J. Appl. Phys. 2010, 108, 053512.
- 112J. M. Winey, Y. M. Gupta, J. Appl. Phys. 2001, 90, 1669–1671.
- 113L. Valenzano, W. J. Slough, W. Perger, AIP Conf. Proc. 2012, 1426, 1191–1194.
- 114J. Sartwell, C. J. Eckhardt, Phys. Rev. B 1993, 48, 12438–12448.
- 115C. Ecolivet, M. Sanquer, K. Ishii, H. Nakayama, Phys. Rev. B 1991, 44, 4185–4191.
- 116C. Ecolivet, M. Sanquer, K. Ishii, H. Nakayama, Phys. Rev. B 1995, 52, 10633–10634.
- 117J. Sartwell, C. Eckhardt, Phys. Rev. B 1995, 52, 10635–10636.
- 118N. Morita, H. Nakayama, K. Ishii, J. Phys. Soc. Jpn. 1991, 60, 2684–2690.
- 119J. Sapriel, R. Hierle, J. Zyss, M. Boissier, Appl. Phys. Lett. 1989, 55, 2594–2596.
- 120C. Bolme, K. Ramos, J. Appl. Phys. 2014, 116, 183503.
- 121R. B. Schwarz, D. E. Hooks, J. J. Dick, J. I. Archuleta, A. R. Martinez, J. Appl. Phys. 2005, 98, 056106.
- 122J. J. Haycraft, L. L. Stevens, C. J. Eckhardt, J. Chem. Phys. 2006, 124, 024712.
- 123D. E. Taylor, J. Appl. Phys. 2014, 116, 053513.
- 124D. Hooks, K. Ramos, C. Bolme, M. Cawkwell, Explos. Propellants Pyrotechnica 2015, 40, 333–350.
- 125J. Fan, Y. Su, Q. Zhang, J. Zhao, Comput. Mater. Sci. 2019, 161, 379–384.
- 126Q. Zhu, A. G. Shtukenberg, D. J. Carter, T. Q. Yu, J. Yang, M. Chen, P. Raiteri, A. R. Oganov, B. Pokroy, I. Polishchuk, P. J. Bygrave, G. M. Day, A. L. Rohl, M. E. Tuckerman, B. Kahr, J. Am. Chem. Soc. 2016, 138, 4881–4889.
- 127F. Safari, A. Olejniczak, A. Katrusiak, Cryst. Growth Des. 2019, 19, 5629–5635.
- 128J. M. Robertson, A. Ubbelohde, Proc. R. Soc. London Ser. A 1938, 167, 122–135.
- 129J. M. Robertson, A. Ubbelohde, Proc. R. Soc. London Ser. A 1938, 167, 136–147.
- 130G. Day, S. Price, M. Leslie, Cryst. Growth Des. 2001, 1, 13–27.
- 131V. Koptsik, Kristallografiya 1960, 4, 197–200.
- 132S. Shang, Y. Wang, P. Guan, W. Y. Wang, H. Fang, T. Anderson, Z.-K. J. Liu, J. Mater. Chem. A 2015, 3, 8002–8014.
- 133M. Cutini, B. Civalleri, M. Corno, R. Orlando, J. G. Brandenburg, L. Maschio, P. J. Ugliengo, J. Chem. Theory Comput. 2016, 12, 3340–3352.
- 134G. J. Goldsmith, J. G. White, J. Chem. Phys. 1959, 31, 1175–1187.
- 135A. Yoshihara, E. Bernstein, J. Chem. Phys. 1982, 77, 5319–5326.
- 136G. Fischer, J. Zarembowitch, C. R. Acad. Sci. Paris Serie B 1970, 270, 852–855.
- 137T. C. T. Ting, Anisotropic Elasticity : Theory and Applications, Oxford University Press, 1996.
10.1093/oso/9780195074475.001.0001 Google Scholar
- 138A. Chumakov, I. Silvestrova, K. Aleksandrov, Kristallografiya 1958, 3, 480.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.