Enantioselective Crystallization of Chiral Inorganic Crystals of ϵ-Zn(OH)2 with Amino Acids
Gil Otis
Department of Chemistry and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorMolhm Nassir
Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorMichael Zutta
Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorAbed Saady
Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorCorresponding Author
Prof. Sharon Ruthstein
Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorCorresponding Author
Prof. Yitzhak Mastai
Department of Chemistry and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorGil Otis
Department of Chemistry and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorMolhm Nassir
Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorMichael Zutta
Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorAbed Saady
Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorCorresponding Author
Prof. Sharon Ruthstein
Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorCorresponding Author
Prof. Yitzhak Mastai
Department of Chemistry and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002 Israel
Search for more papers by this authorAbstract
Many inorganic materials can form crystals, but little is known about their enantioselective crystallization. Herein, we report on the enantioselective crystallization of ϵ-Zn(OH)2 (Wulfingite) chiral crystals by using amino acids. Crystals of ϵ-Zn(OH)2 were crystallized from supersaturated sodium hydroxide and zinc nitrate aqueous solutions in the presence of l- or d-arginine. All of the chiral measurements, such as selective chiral adsorption by circular dichroism (CD), chiral chromatography, and polarimetry measurements, clearly show chiral discrimination during the crystallization of ϵ-Zn(OH)2. In addition, a new method has been developed for identifying chirality in crystals by using electron paramagnetic resonance (EPR). Although the values of chiral induction of the ϵ-Zn(OH)2 crystals obtained are somewhat low, these values are still significant because they demonstrate that enantioselectivity during the crystallization of chiral inorganic crystals with chiral additives can be achieved. The method can be applied to many chiral inorganic systems. Understanding and controlling the crystallization of chiral inorganic crystals is important for gaining knowledge on the interaction of chiral molecules with inorganic surfaces. This knowledge can lead to an understanding of basic scientific questions such as the evolution of homochirality in biomolecules and the development of chiral inorganic crystals for a variety of purposes such as asymmetric catalysis and optical applications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202009061-sup-0001-misc_information.pdf697.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Gal, Nat. Chem. 2017, 9, 604–605;
- 1bK. Molčanov, V. Stilinovic, Angew. Chem. Int. Ed. 2014, 53, 638–652; Angew. Chem. 2014, 126, 650–665;
- 1cH. Flack, Acta Crystallogr. Sect. A 2009, 65, 371–389.
- 2
- 2aD. G. Blackmond, Cold Spring Harbor Perspect. Biol. 2010, 2, a002147;
- 2bJ. R. Brandt, F. Salerno, M. J. Fuchter, Nat. Rev. Chem. 2017, 1, 0045;
- 2cA. Kühnle, T. R. Linderoth, B. Hammer, F. Besenbacher, Nature 2002, 415, 891;
- 2dC. Cativiela, M. D. Díaz-de-Villegas, Tetrahedron: Asymmetry 2007, 18, 569–623;
- 2eT. J. Ward, K. D. Ward, Anal. Chem. 2012, 84, 626–635;
- 2fE. L. Eliel, S. H. Wilen, Stereochemistry of organic compounds, Wiley, Hoboken, 2008.
- 3
- 3aW. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, N. A. Kotov, Chem. Rev. 2017, 117, 8041–8093;
- 3bR. M. Hazen, D. S. Sholl, Nat. Mater. 2003, 2, 367–374;
- 3cA. Ben-Moshe, B. M. Maoz, A. O. Govorov, G. Markovich, Chem. Soc. Rev. 2013, 42, 7028–7041;
- 3dT. A. E. Jakschitz, B. M. Rode, Chem. Soc. Rev. 2012, 41, 5484–5489;
- 3eY.-Q. Lan, S.-L. Li, X.-L. Wang, D.-Y. Du, Z.-M. Su, E.-B. Wang, Chem. Eur. J. 2008, 14, 9999–10006;
- 3fC. E. Song, S. G. Lee, Chem. Rev. 2002, 102, 3495–3524;
- 3gY. Xia, Y. Zhou, Z. Tang, Nanoscale 2011, 3, 1374–1382;
- 3hC. Gautier, T. Buergi, ChemPhysChem 2009, 10, 483–492;
- 3iY. Luo, C. Chi, M. Jiang, R. Li, S. Zu, Y. Li, Z. Fang, Adv. Opt. Mater. 2017, 5, 1700040;
- 3jF. P. Milton, J. Govan, M. V. Mukhina, Y. K. Gun'ko, Nanoscale Horiz. 2016, 1, 14–26;
- 3kV. K. Valev, J. J. Baumberg, C. Sibilia, T. Verbiest, Adv. Mater. 2013, 25, 2517–2534;
- 3lY. Wang, J. Xu, Y. Wang, H. Chen, Chem. Soc. Rev. 2013, 42, 2930–2962;
- 3mT. Yasukawa, H. Miyamura, S. Kobayashi, Chem. Soc. Rev. 2014, 43, 1450–1461;
- 3nJ. Zhang, M. T. Albelda, Y. Liu, J. W. Canary, Chirality 2005, 17, 404–418.
- 4
- 4aC. Gautier, T. Buergi, J. Am. Chem. Soc. 2006, 128, 11079–11087;
- 4bC. Gautier, T. Buergi, J. Am. Chem. Soc. 2008, 130, 7077–7084;
- 4cA. Guerrero-Martínez, J. L. Alonso-Gómez, B. Auguié, M. M. Cid, L. M. Liz-Marzán, Nano Today 2011, 6, 381–400.
- 5
- 5aS. Kobayashi, N. Hamasaki, M. Suzuki, M. Kimura, H. Shirai, K. Hanabusa, J. Am. Chem. Soc. 2002, 124, 6550–6551;
- 5bO. Lidor-Shalev, N. Pliatsikas, Y. Carmiel, P. Patsalas, Y. Mastai, ACS Nano 2017, 11, 4753–4759;
- 5cO. L. Shalev, Y. Carmiel, R. Gottesman, S. Tirosh, Y. Mastai, Chem. Commun. 2016, 52, 12072–12075.
- 6
- 6aK. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, M. Kuwata-Gonokami, Phys. Rev. Lett. 2011, 106, 057402;
- 6bJ. Kumar, K. G. Thomas, L. M. Liz-Marzan, Chem. Commun. 2016, 52, 12555–12569;
- 6cY. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, Z. Tang, Angew. Chem. Int. Ed. 2011, 50, 11456–11459; Angew. Chem. 2011, 123, 11658–11661.
- 7
- 7aJ. Wang, S. Liu, C. Zhang, H. Xu, X. Yang, Prog. Chem. 2011, 23, 669–678;
- 7bG. Levi, Y. Mastai, ChemNanoMat 2019, 5, 710–714;
- 7cH. Qiu, S. Che, Chem. Soc. Rev. 2011, 40, 1259–1268;
- 7dB. Wang, C. Chi, W. Shan, Y. Zhang, N. Ren, W. Yang, Y. Tang, Angew. Chem. Int. Ed. 2006, 45, 2088–2090; Angew. Chem. 2006, 118, 2142–2144;
- 7eS. Marx, D. Avnir, Acc. Chem. Res. 2007, 40, 768–776.
- 8
- 8aJ. R. Sanchez-Valencia, T. Dienel, O. Groening, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, R. Fasel, Nature 2014, 512, 61–64;
- 8bS. S. Aloni, M. Perovic, M. Weitman, R. Cohen, M. Oschatz, Y. Mastai, Nanoscale Adv. 2019, 1, 4981–4988;
- 8cI. Fuchs, N. Fechler, M. Antonietti, Y. Mastai, Angew. Chem. Int. Ed. 2016, 55, 408–412; Angew. Chem. 2016, 128, 417–421.
- 9
- 9aR. M. Hazen, T. R. Filley, G. A. Goodfriend, Proc. Natl. Acad. Sci. USA 2001, 98, 5487–5490;
- 9bC. F. McFadden, P. S. Cremer, A. J. Gellman, Langmuir 1996, 12, 2483–2487.
- 10
- 10aJ. D. Horvath, A. J. Gellman, J. Am. Chem. Soc. 2001, 123, 7953–7954;
- 10bA. J. Gellman, ACS Nano 2010, 4, 5–10;
- 10cJ. D. Horvath, A. J. Gellman, J. Am. Chem. Soc. 2002, 124, 2384–2392;
- 10dJ. D. Horvath, A. Koritnik, P. Kamakoti, D. S. Sholl, A. J. Gellman, J. Am. Chem. Soc. 2004, 126, 14988–14994;
- 10eD. S. Sholl, A. J. Gellman, J. Mol. Catal. A 2004, 216, 169–169;
- 10fD. S. Sholl, A. J. Gellman, AIChE J. 2009, 55, 2484–2490.
- 11F. D. Saeva, G. R. Olin, J. Y. C. Chu, Mol. Cryst. Liq. Cryst. 1977, 41, 5–9.
- 12
- 12aA. Ben-Moshe, A. O. Govorov, G. Markovich, Angew. Chem. Int. Ed. 2013, 52, 1275–1279; Angew. Chem. 2013, 125, 1313–1317;
- 12bA. Ben-Moshe, S. G. Wolf, M. Bar Sadan, L. Houben, Z. Fan, A. O. Govorov, G. Markovich, Nat. Commun. 2014, 5, 4302.
- 13
- 13aK. Kusaba, T. Yagi, J. Yamaura, N. Miyajima, T. Kikegawa, Chem. Phys. Lett. 2007, 437, 61–65;
- 13bM. Wang, Y. Zhou, Y. Zhang, S. H. Hahn, E. J. Kim, CrystEngComm 2011, 13, 6024–6026.
- 14M. Wang, L. Jiang, E. J. Kim, S. H. Hahn, RSC Adv. 2015, 5, 87496–87503.
- 15
- 15aM. M. Green, M. P. Reidy, R. D. Johnson, G. Darling, D. J. O'Leary, G. Willson, J. Am. Chem. Soc. 1989, 111, 6452–6454;
- 15bM. Liu, L. Zhang, T. Wang, Chem. Rev. 2015, 115, 7304–7397;
- 15cM. A. Mateos-Timoneda, M. Crego-Calama, D. N. Reinhoudt, Chem. Soc. Rev. 2004, 33, 363–372.
- 16
- 16aV. Y. Torbeev, E. Shavit, I. Weissbuch, L. Leiserowitz, M. Lahav, Cryst. Growth Des. 2005, 5, 2190–2196;
- 16bI. Weissbuch, L. Addadi, M. Lahav, L. Leiserowitz, Science 1991, 253, 637–645;
- 16cI. Weissbuch, R. Popovitzbiro, M. Lahav, L. Leiserowitz, Acta Crystallogr. Sect. B 1995, 51, 115–148.
- 17
- 17aA. M. Cody, R. D. Cody, J. Cryst. Growth 1991, 113, 508–519;
- 17bA. Matsumoto, Y. Kaimori, M. Uchida, H. Omori, T. Kawasaki, K. Soai, Angew. Chem. Int. Ed. 2017, 56, 545–548; Angew. Chem. 2017, 129, 560–563.
- 18
- 18aT. Sugawara, Y. Suwa, K. Ohkawa, H. Yamamoto, Macromol. Rapid Commun. 2003, 24, 847–851;
- 18bW. Jiang, M. S. Pacella, D. Athanasiadou, V. Nelea, H. Vali, R. M. Hazen, J. J. Gray, M. D. McKee, Nat. Commun. 2017, 8, 15066.
- 19I. I. Smalyukh, S. Shiyanovskii, O. Lavrentovich, Chem. Phys. Lett. 2001, 336, 88–96.
- 20
- 20aT. E. Beesley, R. P. Scott, Chiral chromatography, Wiley, Hoboken, 1999;
- 20bB. Chankvetadze, J. Chromatogr. A 1997, 792, 269–295;
- 20cN. M. Maier, P. Franco, W. Lindner, J. Chromatogr. A 2001, 906, 3–33.
- 21S. Foerier, I. A. Kolmychek, O. A. Atsipetrov, T. Verbiest, V. K. Valev, ChemPhysChem 2009, 10, 1431–1434.
- 22
- 22aA. Shval, Y. Mastai, Chem. Commun. 2011, 47, 5735–5737;
- 22bL. Werber, Y. Mastai, Chirality 2018, 30, 619–631;
- 22cL. Werber, L. C. Preiss, K. Landfester, R. Munoz-Espi, Y. Mastai, Chirality 2015, 27, 613–618.
- 23M. Y. Ghotbi, J. Alloys Compd. 2010, 491, 420–422.
- 24J. Winiarski, W. Tylus, K. Winiarska, I. Szczygieł, B. Szczygieł, J. Spectrosc. 2018, 2018, 2079278.
- 25J. Peisach, W. E. Blumberg, Arch. Biochem. Biophys. 1974, 165, 691–708.
- 26W. Kaim, M. Wanner, A. Knödler, S. Záliš, Inorg. Chim. Acta 2002, 337, 163–172.
- 27J. Conradie, Data Brief 2018, 21, 2051–2058.
- 28I. Procter, B. Hathaway, P. Hodgson, J. Inorg. Nucl. Chem. 1972, 34, 3689–3697.
- 29S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42–55.
- 30
- 30aP.-F. Bacarea, I. Neda, C. G. Daniliuc, A. Bacarea, L. Silaghi, Rev. Chim. 2012, 63, 489–494;
- 30bA. Wojciechowska, A. Kochel, M. Duczmal, Mater. Chem. Phys. 2016, 182, 472–480;
- 30cO. Yamauchi, A. Odani, M. Takani, J. Chem. Soc. Dalton Trans. 2002, 3411–3421.
- 31
- 31aM. Yokota, N. Doki, K. Shimizu, Cryst. Growth Des. 2006, 6, 1588–1590;
- 31bY. Mastai, Chem. Soc. Rev. 2009, 38, 772–780;
- 31cT. Menahem, Y. Mastai, J. Polym. Sci. Part A 2006, 44, 3009–3017;
- 31dR. E. Morris, X. Bu, Nat. Chem. 2010, 2, 353–361;
- 31eA. G. Shtukenberg, S. S. Lee, B. Kahr, M. D. Ward, Annu. Rev. Chem. Biomol. Eng. 2014, 5, 77–96.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.