Halogen-Imparted Reactivity in Lithium Carbenoid Mediated Homologations of Imine Surrogates: Direct Assembly of bis-Trifluoromethyl-β-Diketiminates and the Dual Role of LiCH2I
Laura Ielo
University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
Search for more papers by this authorLaura Castoldi
University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
Search for more papers by this authorSaad Touqeer
University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
Search for more papers by this authorJessica Lombino
Fondazione Ri.MED, Via Bandiera 11, 90133 Palermo, Italy
University of Palermo, Department STEBICEF, Via Archirafi 32, 90123 Palermo, Italy
Search for more papers by this authorAlexander Roller
University of Vienna, X-Ray Structure Analysis Center, Waehringerstrasse 42, 1090 Vienna, Austria
Search for more papers by this authorCristina Prandi
University of Turin, Department of Chemistry, Via P. Giuria 7, 10125 Turin, Italy
Search for more papers by this authorWolfgang Holzer
University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
Search for more papers by this authorCorresponding Author
Vittorio Pace
University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
University of Turin, Department of Chemistry, Via P. Giuria 7, 10125 Turin, Italy
Search for more papers by this authorLaura Ielo
University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
Search for more papers by this authorLaura Castoldi
University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
Search for more papers by this authorSaad Touqeer
University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
Search for more papers by this authorJessica Lombino
Fondazione Ri.MED, Via Bandiera 11, 90133 Palermo, Italy
University of Palermo, Department STEBICEF, Via Archirafi 32, 90123 Palermo, Italy
Search for more papers by this authorAlexander Roller
University of Vienna, X-Ray Structure Analysis Center, Waehringerstrasse 42, 1090 Vienna, Austria
Search for more papers by this authorCristina Prandi
University of Turin, Department of Chemistry, Via P. Giuria 7, 10125 Turin, Italy
Search for more papers by this authorWolfgang Holzer
University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
Search for more papers by this authorCorresponding Author
Vittorio Pace
University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
University of Turin, Department of Chemistry, Via P. Giuria 7, 10125 Turin, Italy
Search for more papers by this authorDedicated to Professor José Vicente Sinisterra on the occasion of his 70th birthday
Abstract
The selective formal insertion (homologation) of a carbon unit bridging the two trifluoroacetamidoyl chlorides (TFAICs) units is reported. The tactic is levered on a highly chemoselective homologation–metalation–acyl nucleophilic substitution sequence which precisely enables to assemble novel trifluoromethylated β-diketiminates within a single synthetic operation. Unlike previous homologations conducted with LiCH2Cl furnishing aziridines, herein we exploit the unique capability of iodomethyllithium to act contemporaneously as a C1 source (homologating effect) and metalating agent. The mechanistic rationale grounded on experimental evidences supports the hypothesized proposal and, the structural analysis gathers key aspects of this class of valuable ligands in catalysis.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202007954-sup-0001-cif.pdf17 KB | Supplementary |
ange202007954-sup-0001-misc_information.pdf6.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For seminal work, see: G. L. Closs, R. A. Moss, J. Am. Chem. Soc. 1964, 86, 4042–4053.
- 2For an authoritative overview on carbenoids chemistry, see: G. Boche, J. C. W. Lohrenz, Chem. Rev. 2001, 101, 697–756. For additional structural and reactivity aspects, see also: A. Salomone, F. M. Perna, A. Falcicchio, S. O. Nilsson Lill, A. Moliterni, R. Michel, S. Florio, D. Stalke, V. Capriati, Chem. Sci. 2014, 5, 528–538.
- 3For comprehensive reviews on carbenoids, see:
- 3aM. Braun in The Chemistry of Organolithium Compounds, Vol. 1 (Eds.: Z. Rappoport, I. Marek), Wiley, Chichester, 2004, pp. 829–900;
10.1002/047002111X.ch13 Google Scholar
- 3bV. Capriati in Contemporary Carbene Chemistry, Wiley, Hoboken, 2013, pp. 325–362;
10.1002/9781118730379.ch11 Google Scholar
- 3cL. Castoldi, S. Monticelli, R. Senatore, L. Ielo, V. Pace, Chem. Commun. 2018, 54, 6692–6704;
- 3dV. H. Gessner, Chem. Commun. 2016, 52, 12011–12023;
- 3eV. Capriati, S. Florio, Chem. Eur. J. 2010, 16, 4152–4162;
- 3fP. R. Blakemore, R. W. Hoffmann, Angew. Chem. Int. Ed. 2018, 57, 390–407; Angew. Chem. 2018, 130, 396–413.
- 4For selected representative examples, see:
- 4aJ. Barluenga, B. Baragaña, A. Alonso, J. M. Concellón, J. Chem. Soc. Chem. Commun. 1994, 969–970;
- 4bJ. M. Concellón, H. Rodríguez-Solla, C. Simal, Org. Lett. 2008, 10, 4457–4460;
- 4cS. Monticelli, M. Colella, V. Pillari, A. Tota, T. Langer, W. Holzer, L. Degennaro, R. Luisi, V. Pace, Org. Lett. 2019, 21, 584–588.
- 5For seminal work, see:
- 5aD. S. Matteson, D. Majumdar, J. Am. Chem. Soc. 1980, 102, 7588–7590; For a perspective, see:
- 5bD. S. Matteson, J. Org. Chem. 2013, 78, 10009–10023.
- 6For oustanding works in the field, see:
- 6aJ. Wu, P. Lorenzo, S. Zhong, M. Ali, C. P. Butts, E. L. Myers, V. K. Aggarwal, Nature 2017, 547, 436–440;
- 6bA. Fawcett, A. Murtaza, C. H. U. Gregson, V. K. Aggarwal, J. Am. Chem. Soc. 2019, 141, 4573–4578;
- 6cA. Varela, L. K. B. Garve, D. Leonori, V. K. Aggarwal, Angew. Chem. Int. Ed. 2017, 56, 2127–2131; Angew. Chem. 2017, 129, 2159–2163;
- 6dM. Burns, S. Essafi, J. R. Bame, S. P. Bull, M. P. Webster, S. Balieu, J. W. Dale, C. P. Butts, J. N. Harvey, V. K. Aggarwal, Nature 2014, 513, 183–188.
- 7
- 7aV. Pace, L. Castoldi, S. Monticelli, M. Rui, S. Collina, Synlett 2017, 28, 879–888;
- 7bP. R. Blakemore, M. S. Burge, J. Am. Chem. Soc. 2007, 129, 3068–3069;
- 7cZ. Wu, X. Sun, K. Potter, Y. Cao, L. N. Zakharov, P. R. Blakemore, Angew. Chem. Int. Ed. 2016, 55, 12285–12289; Angew. Chem. 2016, 128, 12473–12477.
- 8
- 8aV. Pace, L. Castoldi, E. Mazzeo, M. Rui, T. Langer, W. Holzer, Angew. Chem. Int. Ed. 2017, 56, 12677–12682; Angew. Chem. 2017, 129, 12851–12856;
- 8bL. Ielo, S. Touqeer, A. Roller, T. Langer, W. Holzer, V. Pace, Angew. Chem. Int. Ed. 2019, 58, 2479–2484; Angew. Chem. 2019, 131, 2501–2506.
- 9For a review, see: Z. Chen, S. Hu, X.-F. Wu, Org. Chem. Front. 2020, 7, 223–254.
- 10
- 10aS. Florio, R. Luisi, Chem. Rev. 2010, 110, 5128–5157;
- 10bG. S. Singh, M. D'Hooghe, N. De Kimpe, Chem. Rev. 2007, 107, 2080–2135.
- 11
- 11aD. T. Carey, E. K. Cope-Eatough, E. Vilaplana-Mafé, F. S. Mair, R. G. Pritchard, J. E. Warren, R. J. Woods, Dalton Trans. 2003, 1083–1093;
- 11bA. D. Phillips, O. Zava, R. Scopelitti, A. A. Nazarov, P. J. Dyson, Organometallics 2010, 29, 417–427;
- 11cY. Li, L. Jiang, L. Wang, H. Gao, F. Zhu, Q. Wu, Appl. Organomet. Chem. 2006, 20, 181–186.
- 12
- 12aC. Chen, S. M. Bellows, P. L. Holland, Dalton Trans. 2015, 44, 16654–16670;
- 12bP. L. Holland, Acc. Chem. Res. 2008, 41, 905–914.
- 13
- 13aM. P. Crockett, A. S. Wong, B. Li, J. A. Byers, Angew. Chem. Int. Ed. 2020, 59, 5392–5397; Angew. Chem. 2020, 132, 5430–5435;
- 13bJ. Vela, J. M. Smith, Y. Yu, N. A. Ketterer, C. J. Flaschenriem, R. J. Lachicotte, P. L. Holland, J. Am. Chem. Soc. 2005, 127, 7857–7870;
- 13cE. T. Hennessy, T. A. Betley, Science 2013, 340, 591–595.
- 14J.-H. Shon, S. Sittel, T. S. Teets, ACS Catal. 2019, 9, 8646–8658.
- 15V. Pace, W. Holzer, N. De Kimpe, Chem. Rec. 2016, 16, 2061–2076.
- 16
- 16aV. Pace, A. Pelosi, D. Antermite, O. Rosati, M. Curini, W. Holzer, Chem. Commun. 2016, 52, 2639–2642;
- 16bL. Ielo, V. Pillari, M. Miele, W. Holzer, V. Pace, Adv. Synth. Catal. 2020, https://doi.org/10.1002/adsc.202000919.
- 17For comprehensive overviews of lithiation chemistry, see:
- 17aJ. Clayden, Organolithiums: Selectivity for Synthesis, Pergamon, Oxford, 2002;
- 17b Lithium Compounds in Organic Synthesis: From Fundamentals to Applications (Eds.: R. Luisi, V. Capriati), Wiley-VCH, Weinheim, 2014.
10.1002/9783527667512 Google Scholar
- 18For detailed aspects on the quantitative assessment of carbenoids existence time, see:
- 18aM. Colella, A. Tota, Y. Takahashi, R. Higuma, S. Ishikawa, L. Degennaro, R. Luisi, A. Nagaki, Angew. Chem. Int. Ed. 2020, 59, 10924–10928; Angew. Chem. 2020, 132, 11016–11020;
- 18bP. Musci, M. Colella, A. Sivo, G. Romanazzi, R. Luisi, L. Degennaro, Org. Lett. 2020, 22, 3623–3627; See also refs. [3c, 7a] and [15]. For remarkable examples of stable carbenoids, see:
- 18cT. Cantat, X. Jacques, L. Ricard, X. F. Le Goff, N. Mézailles, P. Le Floch, Angew. Chem. Int. Ed. 2007, 46, 5947; Angew. Chem. 2007, 119, 6051;
- 18dV. Capriati, S. Florio, R. Luisi, F. M. Perna, A. Spina, J. Org. Chem. 2008, 73, 9552.
- 19For a study on Se/Li exchange, see: R. Senatore, L. Castoldi, L. Ielo, W. Holzer, V. Pace, Org. Lett. 2018, 20, 2685–2688.
- 20F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 2 1987, S1–S19. The general NMR behavior of the title compounds confirming the X-ray structural analysis is discussed in the SI.
- 21
- 21aS. Nahm, S. M. Weinreb, Tetrahedron Lett. 1981, 22, 3815–3818; For reviews on amide chemistry, see:
- 21bV. Pace, W. Holzer, B. Olofsson, Adv. Synth. Catal. 2014, 356, 3697–3736;
- 21cR. Senatore, L. Ielo, S. Monticelli, L. Castoldi, V. Pace, Synthesis 2019, 51, 2792–2808; For recent works from our group on the homologation of Weinreb amides with carbenoids, see:
- 21dL. Castoldi, W. Holzer, T. Langer, V. Pace, Chem. Commun. 2017, 53, 9498–9501;
- 21eM. Miele, A. Citarella, N. Micale, W. Holzer, V. Pace, Org. Lett. 2019, 21, 8261–8265;
- 21fG. Parisi, M. Colella, S. Monticelli, G. Romanazzi, W. Holzer, T. Langer, L. Degennaro, V. Pace, R. Luisi, J. Am. Chem. Soc. 2017, 139, 13648–13651.
- 22Deposition Number 2007131 (for 15) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.