Dynamics of Bacteriorhodopsin in the Dark-Adapted State from Solution Nuclear Magnetic Resonance Spectroscopy
Laurens Kooijman
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Search for more papers by this authorDr. Matthias Schuster
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Search for more papers by this authorChristian Baumann
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Search for more papers by this authorSimon Jurt
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Search for more papers by this authorDr. Frank Löhr
Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
Search for more papers by this authorDr. Boris Fürtig
Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
Search for more papers by this authorProf. Dr. Peter Güntert
Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Oliver Zerbe
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Search for more papers by this authorLaurens Kooijman
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Search for more papers by this authorDr. Matthias Schuster
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Search for more papers by this authorChristian Baumann
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Search for more papers by this authorSimon Jurt
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Search for more papers by this authorDr. Frank Löhr
Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
Search for more papers by this authorDr. Boris Fürtig
Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
Search for more papers by this authorProf. Dr. Peter Güntert
Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Oliver Zerbe
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Search for more papers by this authorDedicated to Horst Kessler on the occasion of his 80th birthday
Abstract
To achieve efficient proton pumping in the light-driven proton pump bacteriorhodopsin (bR), the protein must be tightly coupled to the retinal to rapidly convert retinal isomerization into protein structural rearrangements. Methyl group dynamics of bR embedded in lipid nanodiscs were determined in the dark-adapted state, and were found to be mostly well ordered at the cytosolic side. Methyl groups in the M145A mutant of bR, which displays only 10 % residual proton pumping activity, are less well ordered, suggesting a link between side-chain dynamics on the cytosolic side of the bR cavity and proton pumping activity. In addition, slow conformational exchange, attributed to low frequency motions of aromatic rings, was indirectly observed for residues on the extracellular side of the bR cavity. This may be related to reorganization of the water network. These observations provide a detailed picture of previously undescribed equilibrium dynamics on different time scales for ground-state bR.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202004393-sup-0001-misc_information.pdf13.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1U. Haupts, J. Tittor, D. Oesterhelt, Annu. Rev. Biophys. Biomol. Struct. 1999, 28, 367–399.
- 2D. Oesterhelt, Angew. Chem. Int. Ed. Engl. 1976, 15, 17–24; Angew. Chem. 1976, 88, 16–24.
- 3D. Oesterhelt, C. Bräuchle, N. Hampp, Q. Rev. Biophys. 1991, 24, 425–478.
- 4R. R. Birge, Biochim. Biophys. Acta Bioenerg. 1990, 1016, 293–327.
- 5R. R. Birge, Annu. Rev. Phys. Chem. 1990, 41, 683–733.
- 6L. S. Brown, O. P. Ernst, Biochim. Biophys. Acta Proteins Proteomics 2017, 1865, 1512–1521.
- 7O. P. Ernst, D. T. Lodowski, M. Elstner, P. Hegemann, L. S. Brown, H. Kandori, Chem. Rev. 2014, 114, 126–163.
- 8R. Henderson, P. N. Unwin, Nature 1975, 257, 28–32.
- 9E. Pebay-Peyroula, G. Rummel, J. P. Rosenbusch, E. M. Landau, Science 1997, 277, 1676–1681.
- 10H. Luecke, B. Schobert, H. T. Richter, J. P. Cartailler, J. K. Lanyi, J. Mol. Biol. 1999, 291, 899–911.
- 11N. Hasegawa, H. Jonotsuka, K. Miki, K. Takeda, Sci. Rep. 2018, 8, 13123.
- 12J. Heberle, J. Fitter, H. J. Sass, G. Büldt, Biophys. Chem. 2000, 85, 229–248.
- 13J. Heberle, Biochim. Biophys. Acta Bioenerg. 2000, 1458, 135–147.
- 14T. Weinert, P. Skopintsev, D. James, F. Dworkowski, E. Panepucci, D. Kekilli, A. Furrer, S. Brünle, S. Mous, D. Ozerov, P. Nogly, M. Wang, J. Standfuss, Science 2019, 365, 61–65.
- 15P. Nogly, T. Weinert, D. James, S. Carbajo, D. Ozerov, A. Furrer, D. Gashi, V. Borin, P. Skopintsev, K. Jaeger, K. Nass, P. Båth, R. Bosman, J. Koglin, M. Seaberg, T. Lane, D. Kekilli, S. Brünle, T. Tanaka, W. Wu, C. Milne, T. White, A. Barty, U. Weierstall, V. Panneels, E. Nango, S. Iwata, M. Hunter, I. Schapiro, G. Schertler, R. Neutze, J. Standfuss, Science 2018, 361, eaat0094.
- 16E. Nango, A. Royant, M. Kubo, T. Nakane, C. Wickstrand, T. Kimura, T. Tanaka, K. Tono, C. Song, R. Tanaka, T. Arima, A. Yamashita, J. Kobayashi, T. Hosaka, E. Mizohata, P. Nogly, M. Sugahara, D. Nam, T. Nomura, T. Shimamura, D. Im, T. Fujiwara, Y. Yamanaka, B. Jeon, T. Nishizawa, K. Oda, M. Fukuda, R. Andersson, P. Båth, R. Dods, J. Davidsson, S. Matsuoka, S. Kawatake, M. Murata, O. Nureki, S. Owada, T. Kameshima, T. Hatsui, Y. Joti, G. Schertler, M. Yabashi, A. N. Bondar, J. Standfuss, R. Neutze, S. Iwata, Science 2016, 354, 1552–1557.
- 17G. Nass Kovacs, J. P. Colletier, M. L. Grünbein, Y. Yang, T. Stensitzki, A. Batyuk, S. Carbajo, R. B. Doak, D. Ehrenberg, L. Foucar, R. Gasper, A. Gorel, M. Hilpert, M. Kloos, J. E. Koglin, J. Reinstein, C. M. Roome, R. Schlesinger, M. Seaberg, R. L. Shoeman, M. Stricker, S. Boutet, S. Haacke, J. Heberle, K. Heyne, T. Domratcheva, T. R. M. Barends, I. Schlichting, Nat. Commun. 2019, 10, 3177.
- 18C. R. Goldschmidt, O. Kalisky, T. Rosenfeld, M. Ottolenghi, Biophys. J. 1977, 17, 179–183.
- 19R. Govindjee, S. P. Balashov, T. G. Ebrey, Biophys. J. 1990, 58, 597–608.
- 20J. Dobler, W. Zinth, W. Kaiser, D. Oesterhelt, Chem. Phys. Lett. 1988, 144, 215–220.
- 21G. S. Harbison, S. O. Smith, J. A. Pardoen, C. Winkel, J. Lugtenburg, J. Herzfeld, R. Mathies, R. G. Griffin, Proc. Natl. Acad. Sci. USA 1984, 81, 1706–1709.
- 22M. P. Krebs, H. G. Khorana, J. Bacteriol. 1993, 175, 1555–1560.
- 23D. A. Greenhalgh, D. L. Farrens, S. Subramaniam, H. G. Khorana, J. Biol. Chem. 1993, 268, 20305–20311.
- 24H. Patzelt, B. Simon, A. terLaak, B. Kessler, R. Kühne, P. Schmieder, D. Oesterhelt, H. Oschkinat, Proc. Natl. Acad. Sci. USA 2002, 99, 9765–9770.
- 25S. O. Smith, A. B. Myers, J. A. Pardoen, C. Winkel, P. P. Mulder, J. Lugtenburg, R. Mathies, Proc. Natl. Acad. Sci. USA 1984, 81, 2055–2059.
- 26S. O. Smith, H. J. de Groot, R. Gebhard, J. M. Courtin, J. Lugtenburg, J. Herzfeld, R. G. Griffin, Biochemistry 1989, 28, 8897–8904.
- 27A. V. Botelho, T. Huber, T. P. Sakmar, M. F. Brown, Biophys. J. 2006, 91, 4464–4477.
- 28K. R. Rosholm, N. Leijnse, A. Mantsiou, V. Tkach, S. L. Pedersen, V. F. Wirth, L. B. Oddershede, K. J. Jensen, K. L. Martinez, N. S. Hatzakis, P. M. Bendix, A. Callan-Jones, D. Stamou, Nat. Chem. Biol. 2017, 13, 724–729.
- 29N. S. Hatzakis, V. K. Bhatia, J. Larsen, K. L. Madsen, P. Y. Bolinger, A. H. Kunding, J. Castillo, U. Gether, P. Hedegård, D. Stamou, Nat. Chem. Biol. 2009, 5, 835–841.
- 30A. Tonnesen, S. M. Christensen, V. Tkach, D. Stamou, Biophys. J. 2014, 106, 201–209.
- 31A. R. Galiakhmetov, E. A. Kovrigina, C. Xia, J. P. Kim, E. L. Kovrigin, J. Biomol. NMR 2018, 70, 21–31.
- 32F. Hagn, M. L. Nasr, G. Wagner, Nat. Protoc. 2018, 13, 79–98.
- 33L. Frey, N. A. Lakomek, R. Riek, S. Bibow, Angew. Chem. Int. Ed. 2017, 56, 380–383; Angew. Chem. 2017, 129, 388–391.
- 34I. Kucharska, T. C. Edrington, B. Liang, L. K. Tamm, J. Biomol. NMR 2015, 61, 261–274.
- 35L. Sušac, R. Horst, K. Wüthrich, ChemBioChem 2014, 15, 995–1000.
- 36P. Ma, J. Mohrlüder, M. Schwarten, M. Stoldt, S. K. Singh, R. Hartmann, V. Pacheco, D. Willbold, ChemBioChem 2010, 11, 1967–1970.
- 37L. Kooijman, P. Ansorge, M. Schuster, C. Baumann, F. Löhr, S. Jurt, P. Güntert, O. Zerbe, J. Biomol. NMR 2020, 74, 45–60.
- 38E. Schmidt, P. Güntert, J. Am. Chem. Soc. 2012, 134, 12817–12829.
- 39I. Pritišanac, J. M. Würz, T. R. Alderson, P. Güntert, Nat. Commun. 2019, 10, 4922.
- 40O. V. Nekrasova, A. N. Wulfson, R. V. Tikhonov, S. A. Yakimov, T. N. Simonova, A. I. Tagvey, D. A. Dolgikh, M. A. Ostrovsky, M. P. Kirpichnikov, J. Biotechnol. 2010, 147, 145–150.
- 41Y. Sugiyama, Y. Mukohata, J. Biochem. 1996, 119, 1143–1149.
- 42F. Hagn, M. Etzkorn, T. Raschle, G. Wagner, J. Am. Chem. Soc. 2013, 135, 1919–1925.
- 43I. G. Denisov, Y. V. Grinkova, A. A. Lazarides, S. G. Sligar, J. Am. Chem. Soc. 2004, 126, 3477–3487.
- 44V. Tugarinov, L. E. Kay, J. Am. Chem. Soc. 2003, 125, 13868–13878.
- 45P. Scherrer, M. K. Mathew, W. Sperling, W. Stoeckenius, Biochemistry 1989, 28, 829–834.
- 46N. A. Dencher, M. P. Heyn, FEBS Lett. 1979, 108, 307–310.
- 47N. A. Dencher, K. D. Kohl, M. P. Heyn, Biochemistry 1983, 22, 1323–1334.
- 48B. Schobert, J. Cupp-Vickery, V. Hornak, S. Smith, J. Lanyi, J. Mol. Biol. 2002, 321, 715–726.
- 49T. Nishikawa, M. Murakami, T. Kouyama, J. Mol. Biol. 2005, 352, 319–328.
- 50N. A. Lakomek, J. Ying, A. Bax, J. Biomol. NMR 2012, 53, 209–221.
- 51D. Sheppard, R. Sprangers, V. Tugarinov, Prog. Nucl. Magn. Reson. Spectrosc. 2010, 56, 1–45.
- 52H. Sun, L. E. Kay, V. Tugarinov, J. Phys. Chem. B 2011, 115, 14878–14884.
- 53V. Tugarinov, R. Sprangers, L. E. Kay, J. Am. Chem. Soc. 2007, 129, 1743–1750.
- 54T. I. Igumenova, K. K. Frederick, A. J. Wand, Chem. Rev. 2006, 106, 1672–1699.
- 55E. S. O'Brien, B. Fuglestad, H. J. Lessen, M. A. Stetz, D. W. Lin, B. S. Marques, K. Gupta, K. G. Fleming, A. J. Wand, Angew. Chem. Int. Ed. 2020, 59, 11108–11114; Angew. Chem. 2020, 132, 11201–11207.
- 56K. A. Sharp, Methods Enzymol. 2019, 615, 1–39.
- 57A. J. Wand, K. A. Sharp, Annu. Rev. Biophys. 2018, 47, 41–61.
- 58A. J. Venkatakrishnan, X. Deupi, G. Lebon, C. G. Tate, G. F. Schertler, M. M. Babu, Nature 2013, 494, 185–194.
- 59B. Kobilka, Angew. Chem. Int. Ed. 2013, 52, 6380–6388; Angew. Chem. 2013, 125, 6508–6517.
- 60T. Flock, A. S. Hauser, N. Lund, D. E. Gloriam, S. Balaji, M. M. Babu, Nature 2017, 545, 317–322.
- 61G. P. Lisi, K. W. East, V. S. Batista, J. P. Loria, Proc. Natl. Acad. Sci. USA 2017, 114, E3414-E3423.
- 62H. Patzelt, A. S. Ulrich, H. Egbringhoff, P. Dux, J. Ashurst, B. Simon, H. Oschkinat, D. Oesterhelt, J. Biomol. NMR 1997, 10, 95–106.
- 63M. Schubert, M. Kolbe, B. Kessler, D. Oesterhelt, P. Schmieder, ChemBioChem 2002, 3, 1019–1023.
10.1002/1439-7633(20021004)3:10<1019::AID-CBIC1019>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- 64V. Kasinath, K. A. Sharp, A. J. Wand, J. Am. Chem. Soc. 2013, 135, 15092–15100.
- 65E. S. O'Brien, A. J. Wand, K. A. Sharp, Protein Sci. 2016, 25, 1156–1160.
- 66A. L. Lee, A. J. Wand, Nature 2001, 411, 501–504.
- 67K. A. Sharp, V. Kasinath, A. J. Wand, Proteins Struct. Funct. Bioinf. 2014, 82, 2106–2117.
- 68Y. L. Tan, J. Mitchell, J. Klein-Seetharaman, D. Nietlispach, J. Mol. Biol. 2019, 431, 2790–2809.
- 69V. Réat, H. Patzelt, M. Ferrand, C. Pfister, D. Oesterhelt, G. Zaccai, Proc. Natl. Acad. Sci. USA 1998, 95, 4970–4975.
- 70O. Edholm, O. Berger, F. Jähnig, J. Mol. Biol. 1995, 250, 94–111.
- 71G. von Heijne, J. Mol. Biol. 1992, 225, 487–494.
- 72R. Grisshammer, Protein Sci. 2017, 26, 1493–1504.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.