Peak Force Infrared–Kelvin Probe Force Microscopy
Devon S. Jakob
Department of Chemistry, Lehigh University, 6 E Packer Ave., Bethlehem, PA, 18015 USA
Search for more papers by this authorHaomin Wang
Department of Chemistry, Lehigh University, 6 E Packer Ave., Bethlehem, PA, 18015 USA
Search for more papers by this authorDr. Guanghong Zeng
DFM A/S, Danish National Metrology Institute, Kogle Alle 5, 2970 Hørsholm, Denmark
Search for more papers by this authorDr. Daniel E. Otzen
Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wields Vej 14, 8000 Aarhus C, Denmark
Search for more papers by this authorDr. Yong Yan
Department of Chemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182 USA
Search for more papers by this authorCorresponding Author
Dr. Xiaoji G. Xu
Department of Chemistry, Lehigh University, 6 E Packer Ave., Bethlehem, PA, 18015 USA
Search for more papers by this authorDevon S. Jakob
Department of Chemistry, Lehigh University, 6 E Packer Ave., Bethlehem, PA, 18015 USA
Search for more papers by this authorHaomin Wang
Department of Chemistry, Lehigh University, 6 E Packer Ave., Bethlehem, PA, 18015 USA
Search for more papers by this authorDr. Guanghong Zeng
DFM A/S, Danish National Metrology Institute, Kogle Alle 5, 2970 Hørsholm, Denmark
Search for more papers by this authorDr. Daniel E. Otzen
Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wields Vej 14, 8000 Aarhus C, Denmark
Search for more papers by this authorDr. Yong Yan
Department of Chemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182 USA
Search for more papers by this authorCorresponding Author
Dr. Xiaoji G. Xu
Department of Chemistry, Lehigh University, 6 E Packer Ave., Bethlehem, PA, 18015 USA
Search for more papers by this authorAbstract
Correlative scanning probe microscopy of chemical identity, surface potential, and mechanical properties provide insight into the structure–function relationships of nanomaterials. However, simultaneous measurement with comparable and high resolution is a challenge. We seamlessly integrated nanoscale photothermal infrared imaging with Coulomb force detection to form peak force infrared–Kelvin probe force microscopy (PFIR-KPFM), which enables simultaneous nanomapping of infrared absorption, surface potential, and mechanical properties with approximately 10 nm spatial resolution in a single-pass scan. MAPbBr3 perovskite crystals of different degradation pathways were studied in situ. Nanoscale charge accumulations were observed in MAPbBr3 near the boundary to PbBr2. PFIR-KPFM also revealed correlations between residual charges and secondary conformation in amyloid fibrils. PFIR-KPFM is applicable to other heterogeneous materials at the nanoscale for correlative multimodal characterizations.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202004211-sup-0001-misc_information.pdf8.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aI. Amenabar, S. Poly, W. Nuansing, E. H. Hubrich, A. A. Govyadinov, F. Huth, R. Krutokhvostov, L. Zhang, M. Knez, J. Heberle, A. M. Bittner, R. Hillenbrand, Nat. Commun. 2013, 4, 2890;
- 1bT.-X. Huang, S.-C. Huang, M.-H. Li, Z.-C. Zeng, X. Wang, B. Ren, Anal. Bioanal. Chem. 2015, 407, 8177–8195;
- 1cD. S. Jakob, L. Wang, H. Wang, X. G. Xu, Anal. Chem. 2019, 91, 8883–8890;
- 1dL. Wang, H. Wang, M. Wagner, Y. Yan, D. S. Jakob, X. G. Xu, Sci. Adv. 2017, 3, e1700255.
- 2
- 2aM. Nonnenmacher, M. P. O'Boyle, H. K. Wickramasinghe, Appl. Phys. Lett. 1991, 58, 2921–2923;
- 2bS. I. Kitamura, M. Iwatsuki, Appl. Phys. Lett. 1998, 72, 3154–3156.
- 3
- 3aA. Rosa-Zeiser, E. Weilandt, S. Hild, O. Marti, Meas. Sci. Technol. 1997, 8, 1333–1338;
- 3bB. Pittenger, N. Erina, C. Su, Application Note Veeco Instruments Inc. 2010, 1–12.
- 4H. U. Krotil, T. Stifter, H. Waschipky, K. Weishaupt, S. Hild, O. Marti, Surf. Interface Anal. 1999, 27, 336–340.
10.1002/(SICI)1096-9918(199905/06)27:5/6<336::AID-SIA512>3.0.CO;2-0 CAS Web of Science® Google Scholar
- 5D. S. Jakob, H. Wang, X. G. Xu, ACS Nano 2020, 14, 4839–4848.
- 6
- 6aH. Ishii, N. Hayashi, E. Ito, Y. Washizu, K. Sugi, Y. Kimura, M. Niwano, Y. Ouchi, K. Seki, Phys. Status Solidi A 2004, 201, 1075–1094;
- 6bR. Stadler, K. W. Jacobsen, Phys. Rev. B 2006, 74, 161405.
- 7
- 7aH. J. Snaith, Nat. Mater. 2018, 17, 372;
- 7bS. Kazim, M. K. Nazeeruddin, M. Grätzel, S. Ahmad, Angew. Chem. Int. Ed. 2014, 53, 2812–2824; Angew. Chem. 2014, 126, 2854–2867.
- 8J. Hao, W. Li, J. Zhai, H. Chen, Mater. Sci. Eng. R 2019, 135, 1–57.
- 9J. L. Garrett, E. M. Tennyson, M. Hu, J. Huang, J. N. Munday, M. S. Leite, Nano Lett. 2017, 17, 2554–2560.
- 10Y. Shang, G. Li, W. Liu, Z. Ning, Adv. Funct. Mater. 2018, 28, 1801193.
- 11B. R. Sutherland, E. H. Sargent, Nat. Photonics 2016, 10, 295.
- 12X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, C. Soci, Nat. Commun. 2015, 6, 7383.
- 13X. Zhu, Y. Lin, Y. Sun, M. C. Beard, Y. Yan, J. Am. Chem. Soc. 2019, 141, 733–738.
- 14D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 7843–7850.
- 15
- 15aJ. Tong, Z. Song, D. H. Kim, X. Chen, C. Chen, A. F. Palmstrom, P. F. Ndione, M. O. Reese, S. P. Dunfield, O. G. Reid, Science 2019, 364, 475–479;
- 15bA. A. Zhumekenov, M. I. Saidaminov, M. A. Haque, E. Alarousu, S. P. Sarmah, B. Murali, I. Dursun, X.-H. Miao, A. L. Abdelhady, T. Wu, ACS Energy Lett. 2016, 1, 32–37.
- 16
- 16aM. Asghar, J. Zhang, H. Wang, P. Lund, Renewable Sustainable Energy Rev. 2017, 77, 131–146;
- 16bS. D. Stranks, H. J. Snaith, Nat. Nanotechnol. 2015, 10, 391.
- 17
- 17aY. Han, S. Meyer, Y. Dkhissi, K. Weber, J. M. Pringle, U. Bach, L. Spiccia, Y.-B. Cheng, J. Mater. Chem. A 2015, 3, 8139–8147;
- 17bN. Ahn, K. Kwak, M. S. Jang, H. Yoon, B. Y. Lee, J.-K. Lee, P. V. Pikhitsa, J. Byun, M. Choi, Nat. Commun. 2016, 7, 13422.
- 18E. J. Juarez-Perez, L. K. Ono, M. Maeda, Y. Jiang, Z. Hawash, Y. Qi, J. Mater. Chem. A 2018, 6, 9604–9612.
- 19
- 19aQ. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 1;
- 19bJ. Y. Woo, Y. Kim, J. Bae, T. G. Kim, J. W. Kim, D. C. Lee, S. Jeong, Chem. Mater. 2017, 29, 7088–7092.
- 20
- 20aG. Zandomeneghi, M. R. Krebs, M. G. McCammon, M. Fändrich, Protein Sci. 2004, 13, 3314–3321;
- 20bH. Hiramatsu, T. Kitagawa, Biochim. Biophys. Acta Proteins Proteomics 2005, 1753, 100–107.
- 21
- 21aG. Lee, W. Lee, H. Lee, C. Y. Lee, K. Eom, T. Kwon, Sci. Rep. 2015, 5, 16220;
- 21bW. Lee, H. Lee, Y. Choi, K. S. Hwang, S. W. Lee, G. Lee, D. S. Yoon, Macromol. Res. 2017, 25, 1187–1191.
- 22
- 22aF. Chiti, C. M. Dobson, Annu. Rev. Biochem. 2006, 75, 333–366;
- 22bC. M. Dobson, Nature 2003, 426, 884–890.
- 23
- 23aG. Merlini, V. Bellotti, N. Engl. J. Med. 2003, 349, 583–596;
- 23bD. J. Selkoe, Nature 2003, 426, 900–904;
- 23cK. A. Conway, J. D. Harper, P. T. Lansbury, Biochemistry 2000, 39, 2552–2563.
- 24
- 24aR. W. Carrell, D. A. Lomas, Lancet 1997, 350, 134–138;
- 24bT. P. Knowles, M. Vendruscolo, C. M. Dobson, Nat. Rev. Mol. Cell Biol. 2014, 15, 384–396;
- 24cJ. W. Kelly, Proc. Natl. Acad. Sci. USA 1998, 95, 930–932.
- 25
- 25aC. Hertel, E. Terzi, N. Hauser, R. Jakob-Røtne, J. Seelig, J. Kemp, Proc. Natl. Acad. Sci. USA 1997, 94, 9412–9416;
- 25bA. K. Rha, D. Das, O. Taran, Y. Ke, A. K. Mehta, D. G. Lynn, Angew. Chem. Int. Ed. 2020, 59, 358–363; Angew. Chem. 2020, 132, 366–371.
- 26
- 26aK. E. Marshall, K. L. Morris, D. Charlton, N. O'Reilly, L. Lewis, H. Walden, L. C. Serpell, Biochemistry 2011, 50, 2061–2071;
- 26bS. Yun, B. Urbanc, L. Cruz, G. Bitan, D. B. Teplow, H. E. Stanley, Biophys. J. 2007, 92, 4064–4077.
- 27
- 27aW. Lee, H. Jung, M. Son, H. Lee, T. J. Kwak, G. Lee, C. H. Kim, S. W. Lee, D. S. Yoon, RSC Adv. 2014, 4, 56561–56566;
- 27bQ. Ma, G. Wei, X. Yang, Nanoscale 2013, 5, 10397–10403.
- 28F. Ruggeri, S. Vieweg, U. Cendrowska, G. Longo, A. Chiki, H. Lashuel, G. Dietler, Sci. Rep. 2016, 6, 1–11.
- 29M. S. Dueholm, S. V. Petersen, M. Sønderkær, P. Larsen, G. Christiansen, K. L. Hein, J. J. Enghild, J. L. Nielsen, K. L. Nielsen, P. H. Nielsen, D. E. Otzen, Mol. Microbiol. 2010, 77, 1009–1020.
- 30G. Zeng, B. S. Vad, M. S. Dueholm, G. Christiansen, M. Nilsson, T. Tolker-Nielsen, P. H. Nielsen, R. L. Meyer, D. E. Otzen, Front. Microbiol. 2015, 6, 1099–1099.
- 31G. Lee, W. Lee, H. Lee, S. W. Lee, D. S. Yoon, K. Eom, T. Kwon, Appl. Phys. Lett. 2012, 101, 043703.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.