Cs2PtI6 Halide Perovskite is Stable to Air, Moisture, and Extreme pH: Application to Photoelectrochemical Solar Water Oxidation
Muhammed Hamdan
Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, 600036 India
Search for more papers by this authorCorresponding Author
Dr. Aravind Kumar Chandiran
Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, 600036 India
Search for more papers by this authorMuhammed Hamdan
Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, 600036 India
Search for more papers by this authorCorresponding Author
Dr. Aravind Kumar Chandiran
Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, 600036 India
Search for more papers by this authorAbstract
Halide perovskites show incredible photovoltaic power conversion efficiency coupled with several hundreds of hours of device stability. However, their stability is poor in aqueous electrolyte media. Reported here is a vacancy ordered halide perovskite, Cs2PtI6, which shows extraordinary stability under ambient conditions (1 year), in aqueous media of extreme acidic (pH 1), basic (pH 13), and under electrochemical reduction conditions. It was employed as an electrocatalyst and photoanode for hydrogen production and water oxidation, respectively. The catalyst remains intact for at least 100 cycles of electrochemical cycling and six hours of hydrogen production at pH 1. Cs2PtI6 was employed as a photoanode for PEC water oxidation, and the material displayed a photocurrent of 0.8 mA cm−2 at 1.23 V (vs. RHE) under simulated AM1.5G sunlight. Using constant voltage measurement, Cs2PtI6 exhibited over 12 hours of PEC stability without loss of performance.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202000175-sup-0001-misc_information.pdf2.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643–647.
- 2J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, Nature 2013, 499, 316–319.
- 3“NREL Photovoltaic Efficiency Chart,” n.d.
- 4S. Ito, APL Mater. 2016, 4, 091504.
- 5T. Leijtens, K. Bush, R. Cheacharoen, R. Beal, A. Bowring, M. D. McGehee, J. Mater. Chem. A 2017, 5, 11483–11500.
- 6N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, S. A. Haque, Angew. Chem. Int. Ed. 2015, 54, 8208–8212; Angew. Chem. 2015, 127, 8326–8330.
- 7A. J. Pearson, G. E. Eperon, P. E. Hopkinson, S. N. Habisreutinger, J. T. W. Wang, H. J. Snaith, N. C. Greenham, Adv. Energy Mater. 2016, 6, 1600014.
- 8A. D. Sheikh, A. Bera, M. A. Haque, R. B. Rakhi, S. Del Gobbo, H. N. Alshareef, T. Wu, Sol. Energy Mater. Sol. Cells 2015, 137, 6–14.
- 9J. Yang, B. D. Siempelkamp, D. Liu, T. L. Kelly, ACS Nano 2015, 9, 1955–1963.
- 10X. Zhao, N.-G. Park, Photonics 2015, 2, 1139–1151.
- 11J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho, N.-G. Park, Adv. Energy Mater. 2015, 5, 1501310.
- 12M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, et al., Science 2016, 354, 206–209.
- 13M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, et al., Energy Environ. Sci. 2016, 9, 1989–1997.
- 14A. E. Maughan, A. M. Ganose, M. A. Almaker, D. O. Scanlon, J. R. Neilson, Chem. Mater. 2018, 30, 3909–3919.
- 15A. E. Maughan, A. M. Ganose, D. O. Scanlon, J. R. Neilson, Chem. Mater. 2019, 31, 1184–1195.
- 16A. E. Maughan, A. M. Ganose, M. M. Bordelon, E. M. Miller, D. O. Scanlon, J. R. Neilson, J. Am. Chem. Soc. 2016, 138, 8453–8464.
- 17K. Du, W. Meng, X. Wang, Y. Yan, D. B. Mitzi, Angew. Chem. Int. Ed. 2017, 56, 8158–8162; Angew. Chem. 2017, 129, 8270–8274.
- 18G. Volonakis, A. A. Haghighirad, R. L. Milot, W. H. Sio, M. R. Filip, B. Wenger, M. B. Johnston, L. M. Herz, H. J. Snaith, F. Giustino, J. Phys. Chem. Lett. 2017, 8, 772–778.
- 19H. A. Evans, D. H. Fabini, J. L. Andrews, M. Koerner, M. B. Preefer, G. Wu, F. Wudl, A. K. Cheetham, R. Seshadri, Inorg. Chem. 2018, 57, 10375–10382.
- 20H. A. Evans, E. C. Schueller, S. R. Smock, G. Wu, R. Seshadri, F. Wudl, Inorg. Chim. Acta 2017, 468, 280–284.
- 21J. A. Christians, P. A. Miranda Herrera, P. V. Kamat, J. Am. Chem. Soc. 2015, 137, 1530–1538.
- 22S. Ahmad, A. Sadhanala, R. L. Z. Hoye, V. Andrei, M. H. Modarres, B. Zhao, J. Rongé, R. Friend, M. De Volder, ACS Appl. Mater. Interfaces 2019, 11, 23198–23206.
- 23M. Crespo-Quesada, L. M. Pazos-Outón, J. Warnan, M. F. Kuehnel, R. H. Friend, E. Reisner, Nat. Commun. 2016, 7, 6–12.
- 24Y.-F. Xu, M.-Z. Yang, B.-X. Chen, X.-D. Wang, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, J. Am. Chem. Soc. 2017, 139, 5660–5663.
- 25I. Poli, U. Hintermair, M. Regue, S. Kumar, E. V. Sackville, J. Baker, T. M. Watson, S. Eslava, P. J. Cameron, Nat. Commun. 2019, 10, 1–10.
- 26Gurudayal, D. Sabba, M. H. Kumar, L. H. Wong, J. Barber, M. Grätzel, N. Mathews, Nano Lett. 2015, 15, 3833–3839.
- 27Y. S. Chen, J. S. Manser, P. V. Kamat, J. Am. Chem. Soc. 2015, 137, 974–981.
- 28V. Andrei, R. L. Z. Hoye, M. Crespo-Quesada, M. Bajada, S. Ahmad, M. De Volder, R. Friend, E. Reisner, Adv. Energy Mater. 2018, 8, 1801403.
- 29I. S. Kim, M. J. Pellin, A. B. F. Martinson, ACS Energy Lett. 2019, 4, 293–298.
- 30G. Thiele, C. Mrozek, D. Kammerer, K. Wittmann, Z. Naturforsch. B 1983, 38, 905–910.
- 31B. Saparov, J. P. Sun, W. Meng, Z. Xiao, H. S. Duan, O. Gunawan, D. Shin, I. G. Hill, Y. Yan, D. B. Mitzi, Chem. Mater. 2016, 28, 2315–2322.
- 32B. Lee, C. C. Stoumpos, N. Zhou, F. Hao, C. Malliakas, C. Y. Yeh, T. J. Marks, M. G. Kanatzidis, R. P. H. Chang, J. Am. Chem. Soc. 2014, 136, 15379–15385.
- 33M. F. C. Ladd, R. A. Palmer, Structure Determination by X-Ray Crystallography, Springer, Heidelberg, 2003.
10.1007/978-1-4615-0101-5 Google Scholar
- 34R. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751.
- 35C. Wagner, W. Riggs, L. Davis, J. F. Moulder, G. Muilenberg, Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data, PerkinElmer Corporation, Waltham, 1979.
- 36D. Kuse, H. R. Zeller, Phys. Rev. Lett. 1971, 27, 1060–1063.
- 37Y. Cai, W. Xie, H. Ding, Y. Chen, K. Thirumal, L. H. Wong, N. Mathews, S. G. Mhaisalkar, M. Sherburne, M. Asta, Chem. Mater. 2017, 29, 7740–7749.
- 38A. J. Nozik, R. Memming, J. Phys. Chem. 1996, 100, 13061–13078.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.