Mechanochemistry for Synthesis
Corresponding Author
Assoc. Prof. Tomislav Friščić
Department of Chemistry, McGill University, 801 Sherbrooke St. W., H3A 0B8 Montreal, Canada
Laboratoire SPCMIB, CNRS UMR 5068, Université de Toulouse UPS, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
Search for more papers by this authorDr. Cristina Mottillo
Department of Chemistry, McGill University, 801 Sherbrooke St. W., H3A 0B8 Montreal, Canada
Search for more papers by this authorDr. Hatem M. Titi
Department of Chemistry, McGill University, 801 Sherbrooke St. W., H3A 0B8 Montreal, Canada
Search for more papers by this authorCorresponding Author
Assoc. Prof. Tomislav Friščić
Department of Chemistry, McGill University, 801 Sherbrooke St. W., H3A 0B8 Montreal, Canada
Laboratoire SPCMIB, CNRS UMR 5068, Université de Toulouse UPS, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
Search for more papers by this authorDr. Cristina Mottillo
Department of Chemistry, McGill University, 801 Sherbrooke St. W., H3A 0B8 Montreal, Canada
Search for more papers by this authorDr. Hatem M. Titi
Department of Chemistry, McGill University, 801 Sherbrooke St. W., H3A 0B8 Montreal, Canada
Search for more papers by this authorAbstract
Mechanochemical solvent-free reactions by milling, grinding or other types of mechanical action have emerged as a viable alternative to solution chemistry. Mechanochemistry offers not only a possibility to eliminate the need for bulk solvent use, and reduce the generation of waste, but it also unlocks the door to a different reaction environment in which synthetic strategies, reactions and molecules previously not accessible in solution, can be achieved. This Minireview examines the potential of mechanochemistry in chemical and materials synthesis, by providing a cross-section of the recent developments in using ball milling for the formation of molecules and materials based on covalent and coordination bonds.
Conflict of interest
The authors declare no conflict of interest.
References
- 1S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed, D. C. Waddell, Chem. Soc. Rev. 2012, 41, 413–447.
- 2F. Gomollón-Bell, Chem. Int. 2019, 41, 12–17.
10.1515/ci-2019-0203 Google Scholar
- 3L. Takacs, Chem. Soc. Rev. 2013, 42, 7649–7659.
- 4J.-L. Do, T. Friščić, ACS Cent. Sci. 2017, 3, 13–19.
- 5J. G. Hernández, C. Bolm, J. Org. Chem. 2017, 82, 4007–4019.
- 6V. Štrukil, M. D. Igrc, M. Eckert-Maksić, T. Friščić, Chem. Eur. J. 2012, 18, 8464–8473.
- 7G.-W. Wang, K. Komatsu, Y. Murata, M. Smiru, Nature 1997, 387, 583–586.
- 8D. Tan, C. Mottillo, A. D. Katsenis, V. Štrukil, T. Friščić, Angew. Chem. Int. Ed. 2014, 53, 9321–9324; Angew. Chem. 2014, 126, 9475–9478.
- 9R. A. Haley, A. R. Zellner, J. A. Krause, H. Guan, J. Mack, ACS Sustainable Chem. Eng. 2016, 4, 2464–2469.
- 10R. F. Koby, T. P. Hanusa, N. D. Schley, J. Am. Chem. Soc. 2018, 140, 15934–15942.
- 11Y. X. Shi, K. Xu, J. K. Clegg, R. Ganguly, H. Hirao, T. Friščić, F. García, Angew. Chem. Int. Ed. 2016, 55, 12736–12740; Angew. Chem. 2016, 128, 12928–12932.
- 12A. D. Katsenis, A. Puškarić, V. Štrukil, C. Mottillo, P. A. Julien, K. Užarević, M.-H. Pham, T.-O. Do, S. A. J. Kimber, P. Lazić, O. Magdysyuk, R. E. Dinnebier, I. Halasz, T. Friščić, Nat. Commun. 2015, 6, 6662.
- 13V. Štrukil, D. Gracin, O. V. Magdysyuk, R. E. Dinnebier, T. Friščić, Angew. Chem. Int. Ed. 2015, 54, 8440–8443; Angew. Chem. 2015, 127, 8560–8563.
- 14K. Užarević, I. Halasz, T. Friščić, J. Phys. Chem. Lett. 2015, 6, 4129–4140.
- 15M. Ferguson, M. S. Moyano, G. A. Tribello, D. E. Crawford, E. M. Bringa, S. L. James, J. Kohanoff, M. G. Del Pópolo, Chem. Sci. 2019, 10, 2924–2929.
- 16A. M. Belenguer, G. I. Lampronti, A. J. Cruz-Cabeza, C. A. Hunter, J. K. M. Sanders, Chem. Sci. 2016, 7, 6617–6627.
- 17J. L. Howard, Q. Cao, D. L. Browne, Chem. Sci. 2018, 9, 3080–3094.
- 18G.-W. Wang, Chem. Soc. Rev. 2013, 42, 7668–7700.
- 19J. Andersen, J. Mack, Green Chem. 2018, 20, 1435–1443.
- 20D. Hasa, W. Jones, Adv. Drug Delivery Rev. 2017, 117, 147–161.
- 21N. R. Rightmire, T. P. Hanusa, Dalton Trans. 2016, 45, 2352–2362.
- 22A. A. Gečiauskaitė, F. Garcia, Beilstein J. Org. Chem. 2017, 13, 2068–2077.
- 23
- 23aD. Braga, S. L. Giaffreda, F. Grepioni, A. Pettersen, L. Maini, M. Curzi, M. Polito, Dalton Trans. 2006, 1249–1263;
- 23bA. Beillard, X. Bantreil, T.-X. Mėtro, J. Martinez, F. Lamaty, Chem. Rev. 2019, 119, 7529–7609;
- 23cD. Prochowicz, J. Nawrocki, M. Terlecki, W. Marynowski, J. Lewiński, Inorg. Chem. 2018, 57, 13437–13442.
- 24
- 24aT. Friščić, Chem. Soc. Rev. 2012, 41, 3493–3510;
- 24bA. Bose, P. Mal, Beil. J. Org. Chem. 2019, 15, 881–900.
- 25D. E. Crawford, J. Casaban, Adv. Mater. 2016, 28, 5747–5754.
- 26A. Stolle, R. Schmidt, K. Jacob, Faraday Discuss. 2014, 170, 267–286.
- 27I. Halasz, S. A. J. Kimber, P. J. Beldon, A. M. Belenguer, F. Adams, V. Honkimäki, R. C. Nightingale, R. E. Dinnebier, T. Friščić, Nat. Protoc. 2013, 8, 1718–1729.
- 28D. Braga, L. Maini, F. Grepioni, Chem. Soc. Rev. 2013, 42, 7638–7648.
- 29
- 29aT. Friščić, A. V. Trask, W. Jones, W. D. S. Motherwell, Angew. Chem. Int. Ed. 2006, 45, 7546–7550; Angew. Chem. 2006, 118, 7708–7712;
- 29bT. Friščić, A. V. Trask, W. D. S. Motherwell, W. Jones, Cryst. Growth Des. 2008, 8, 1605–1609.
- 30T. Friščić, S. L. Childs, S. A. A. Rizvi, W. Jones, CrystEngComm 2009, 11, 418–426.
- 31J. G. Hernández, Beilstein J. Org. Chem. 2017, 13, 1463–1469.
- 32V. Štrukil, I. Sajko, Chem. Commun. 2017, 53, 9101–9104.
- 33J. Andersen, J. Mack, Angew. Chem. Int. Ed. 2018, 57, 13062–13065; Angew. Chem. 2018, 130, 13246–13249.
- 34
- 34aR. Eckert, M. Felderhoff, F. Schüth, Angew. Chem. Int. Ed. 2017, 56, 2445–2448; Angew. Chem. 2017, 129, 2485–2488;
- 34bC. Bolm, J. G. Hernández, Angew. Chem. Int. Ed. 2019, 58, 3285–3299; Angew. Chem. 2019, 131, 3320–3335.
- 35A. V. Trask, N. Shan, W. D. S. Motherwell, W. Jones, S. Feng, R. B. H. Tan, K. J. Carpenter, Chem. Commun. 2005, 880–882.
- 36R. Chierotti Michele, L. Ferrero, N. Garino, R. Gobetto, L. Pellegrino, D. Braga, F. Grepioni, L. Maini, Chem. Eur. J. 2010, 16, 4347–4358.
- 37E. Colacino, G. Dayaker, A. Morère, T. Friščić, J. Chem. Educ. 2019, 96, 766–771.
- 38D. Cinčić, I. Brekalo, B. Kaitner, Cryst. Growth Des. 2012, 12, 44–48.
- 39A. Mukherjee, R. D. Rogers, A. S. Myerson, CrystEngComm 2018, 20, 3817–3821.
- 40D. Hasa, E. Miniussi, W. Jones, Cryst. Growth Des. 2016, 16, 4582–4588.
- 41M. Tireli, M. Juribašić-Kulcsár, N. Cindro, D. Gracin, N. Biliškov, M. Borovina, M. Ćurić, I. Halasz, K. Užarević, Chem. Commun. 2015, 51, 8058–8061.
- 42L. Chen, M. Regan, J. Mack, ACS Catal. 2016, 6, 868–872.
- 43F. C. Strobridge, N. Judaš, T. Friščić, CrystEngComm 2010, 12, 2409–2418.
- 44P. A. Julien, C. Mottillo, T. Friščić, Green Chem. 2017, 19, 2729–2747.
- 45T. Friščić, D. G. Reid, I. Halasz, R. S. Stein, R. E. Dinnebier, M. J. Duer, Angew. Chem. Int. Ed. 2010, 49, 712–715; Angew. Chem. 2010, 122, 724–727.
- 46P. J. Beldon, L. Fábián, R. S. Stein, A. Thirumurugan, A. K. Cheetham, T. Friščić, Angew. Chem. Int. Ed. 2010, 49, 9640–9643; Angew. Chem. 2010, 122, 9834–9837.
- 47V. M. André, A. Hardeman, I. Halasz, R. S. Stein, G. J. Jackson, D. G. Reid, M. J. Duer, C. Curfs, T. Friščić, Angew. Chem. Int. Ed. 2011, 50, 7858–7861; Angew. Chem. 2011, 123, 8004–8007.
- 48M. Srivastava, P. Rai, J. Singh, J. Singh, RSC Adv. 2014, 4, 30592–30597.
- 49D. Hasa, G. Schneider Rauber, D. Voinovich, W. Jones, Angew. Chem. Int. Ed. 2015, 54, 7371–7375; Angew. Chem. 2015, 127, 7479–7483.
- 50L. Konnert, M. Dimassi, L. Gonnet, F. Lamaty, J. Martinez, E. Colacino, RSC Adv. 2016, 6, 36978–36986.
- 51V. Declerck, E. Colacino, X. Bantreil, J. Martinez, F. Lamaty, Chem. Commun. 2012, 48, 11778–11780.
- 52D. Braga, S. L. Giaffreda, F. Grepioni, M. R. Chierotti, R. Gobetto, G. Paladino, M. Polito, CrystEngComm 2007, 9, 879–881.
- 53D. Cinčić, I. Brekalo, B. Kaitner, Chem. Commun. 2012, 48, 11683–11685.
- 54F. Qi, R. S. Stein, T. Friščić, Green Chem. 2014, 16, 121–132.
- 55F. Hammerer, L. Loots, J.-L. Do, J. P. D. Therien, C. W. Nickels, T. Friščić, K. Auclair, Angew. Chem. Int. Ed. 2018, 57, 2621–2624; Angew. Chem. 2018, 130, 2651–2654.
- 56S. Kaabel, R. S. Stein, M. Fomitšenko, I. Järving, T. Friščić, R. Aav, Angew. Chem. Int. Ed. 2019, 58, 6230–6234; Angew. Chem. 2019, 131, 6296–6300.
- 57C. Mottillo, Y. Lu, M.-H. Pham, M. J. Cliffe, T.-O. Do, T. Friščić, Green Chem. 2013, 15, 2121–2131.
- 58X. Feng, C. Jia, J. Wang, X. Cao, P. Tang, W. Yuan, Green Chem. 2015, 17, 3740–3745.
- 59J. G. Hernández, T. Friščić, Tetrahedron Lett. 2015, 56, 4253–4265.
- 60Z.-J. Jiang, Z.-H. Li, J.-B. Yu, W.-K. Su, J. Org. Chem. 2016, 81, 10049–10055.
- 61T. L. Cook, J. A. Walker, Jr., J. Mack, Green Chem. 2013, 15, 617–619.
- 62D. A. Fulmer, W. C. Shearouse, S. T. Medonza, J. Mack, Green Chem. 2009, 11, 1821–1825.
- 63J.-L. Do, C. Mottillo, D. Tan, V. Štrukil, T. Friščić, J. Am. Chem. Soc. 2015, 137, 2476–2479.
- 64S.-J. Lou, Y.-J. Mao, D.-Q. Xu, J.-Q. He, Q. Chen, Z.-Y. Xu, ACS Catal. 2016, 6, 3890–3894.
- 65
- 65aG. N. Hermann, P. Becker, C. Bolm, Angew. Chem. Int. Ed. 2016, 55, 3781–3784; Angew. Chem. 2016, 128, 3845–3848;
- 65bJ. G. Hernández, Chem. Eur. J. 2017, 23, 17157–17165.
- 66J. G. Hernández, C. Bolm, Chem. Commun. 2015, 51, 12582–12584.
- 67L. A. Polindara-García, E. Juaristi, Eur. J. Org. Chem. 2016, 1095–1102.
- 68D. Tan, V. Štrukil, C. Mottillo, T. Friščić, Chem. Commun. 2014, 50, 5248–5250.
- 69J. Yu, Z. Li, K. Jia, Z. Jiang, M. Liu, W. Su, Tetrahedron Lett. 2013, 54, 2006–2009.
- 70L. Chen, M. O. Bovee, B. E. Lemma, K. S. M. Keithley, S. L. Pilson, M. G. Coleman, J. Mack, Angew. Chem. Int. Ed. 2015, 54, 11084–11087; Angew. Chem. 2015, 127, 11236–11239.
- 71T. Portada, D. Margetić, V. Štrukil, Molecules 2018, 23, 3163.
- 72C. Bolm, J. G. Hernández, ChemSusChem 2018, 11, 1410–1420.
- 73S. Spinella, M. Ganesh, G. Lo Re, S. Zhang, J.-M. Raquez, P. Dubois, R. A. Gross, Green Chem. 2015, 17, 4146–4150.
- 74J. G. Hernández, M. Frings, C. Bolm, ChemCatChem 2016, 8, 1769–1772.
- 75M. Pérez-Venegas, G. Reyes-Rangel, A. Neri, J. Escalante, E. Juaristi, Beilstein J. Org. Chem. 2017, 13, 1728–1734.
- 76J. G. Hernández, K. J. Ardila-Fierro, D. Crawford, S. L. James, C. Bolm, Green Chem. 2017, 19, 2620–2625.
- 77K. J. Ardila-Fierro, D. E. Crawford, A. Körner, S. L. James, C. Bolm, J. G. Hernández, Green Chem. 2018, 20, 1262–1269.
- 78J. P. D. Therien, F. Hammerer, T. Friščić, K. Auclair, ChemSusChem 2019, 12, 3481–3490.
- 79
- 79aS. Lamour, S. Pallmann, M. Haas, O. Trapp, Life 2019, 9, 52;
- 79bC. Bolm, R. Mocci, C. Schumacher, M. Turberg, F. Puccetti, J. G. Hernández, Angew. Chem. Int. Ed. 2018, 57, 2423–2426; Angew. Chem. 2018, 130, 2447–2450.
- 80W. Ostwald, in The Fundamental Principles of Chemistry: An Introduction to All Text-Books of Chemistry, Longmans, Green and Co., New York, 1909.
- 81F. Toda, K. Tanaka, A. Sekikawa, Chem. Commun. 1987, 279–280.
- 82A. N. Sokolov, D.-K. Bučar, J. Baltrusaitis, S. X. Gu, L. R. MacGillivray, Angew. Chem. Int. Ed. 2010, 49, 4273–4277; Angew. Chem. 2010, 122, 4369–4373.
- 83J. Stojaković, B. S. Farris, L. R. MacGillivray, Faraday Discuss. 2014, 170, 35–40.
- 84
- 84aM. Obst, B. König, Beilstein J. Org. Chem. 2016, 12, 2358–2363;
- 84bM. Obst, B. König, Eur. J. Org. Chem. 2018, 4213–4232.
- 85
- 85aS. Karki, T. Friščić, W. Jones, CrystEngComm 2009, 11, 470–481;
- 85bD. R. Weyna, T. Shattock, P. Vishweshwar, M. J. Zaworotko, Cryst. Growth Des. 2009, 9, 1106–1123.
- 86S. Li, I. Huskić, N. Novendra, H. M. Titi, A. Navrotsky, T. Friščić, ACS Omega 2019, 4, 5486–5495.
- 87V. Štrukil, D. Margetić, M. D. Igrc, M. Eckert-Maksić, T. Friščić, Chem. Commun. 2012, 48, 9705–9707.
- 88M. Ferguson, N. Giri, X. Huang, D. Apperley, S. L. James, Green Chem. 2014, 16, 1374–1382.
- 89J. L. Howard, Y. Sagatov, L. Repusseau, C. Schotten, D. L. Browne, Green Chem. 2017, 19, 2798–2802.
- 90N. R. Rightmire, T. P. Hanusa, A. L. Rheingold, Organometallics 2014, 33, 5952–5955.
- 91A. Orita, L. Jiang, T. Nakano, N. Ma, J. Otera, Chem. Commun. 2002, 1362–1363.
- 92A. Garci, K. J. Castor, J. Fakhoury, J.-L. Do, J. Di Trani, P. Chidchob, R. S. Stein, A. K. Mittermaier, T. Friščić, H. F. Sleiman, J. Am. Chem. Soc. 2017, 139, 16913–16922.
- 93M. Turberg, K. J. Ardila-Fierro, C. Bolm, J. G. Hernández, Angew. Chem. Int. Ed. 2018, 57, 10718–10722; Angew. Chem. 2018, 130, 10878–10882.
- 94T.-X. Métro, C. Gervais, A. Martinez, C. Bonhomme, D. Laurencin, Angew. Chem. Int. Ed. 2017, 56, 6803–6807; Angew. Chem. 2017, 129, 6907–6911.
- 95S. Lukin, M. Tireli, T. Stolar, D. Barišić, M. V. Blanco, M. di Michiel, K. Užarević, I. Halasz, J. Am. Chem. Soc. 2019, 141, 1212–1216.
- 96S.-E. Zhu, F. Li, G.-W. Wang, Chem. Soc. Rev. 2013, 42, 7535–7570.
- 97K. Kubota, R. Takahashi, H. Ito, Chem. Sci. 2019, https://doi.org/10.1039/c9sc01711a.
10.1039/c9sc01711a Google Scholar
- 98E. Colacino, A. Porcheddu, I. Halasz, C. Charnay, F. Delogu, R. Guerra, J. Fullenwarth, Green Chem. 2018, 20, 2973–2977.
- 99A. Wróblewska, P. Paluch, E. Wielgus, G. Bujacz, M. K. Dudek, M. J. Potrzebowski, Org. Lett. 2017, 19, 5360–5363.
- 100S. Lukin, M. Tireli, I. Lončarić, D. Barišić, P. Šket, D. Vrsaljko, M. di Michiel, J. Plavec, K. Užarević, I. Halasz, Chem. Commun. 2018, 54, 13216–13219.
- 101J. Antesberger, G. W. V. Cave, M. C. Ferrarelli, M. W. Heaven, C. L. Raston, J. L. Atwood, Chem. Commun. 2005, 892–894.
- 102B. Içli, N. Christinat, J. Tönnemann, C. Schüttler, R. Scopelliti, K. Severin, J. Am. Chem. Soc. 2009, 131, 3154–3155.
- 103B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2013, 135, 5328–5331.
- 104S. Grätz, L. Borchardt, RSC Adv. 2016, 6, 64799–64802.
- 105P. K. Sahoo, A. Bose, P. Mal, Eur. J. Org. Chem. 2015, 6994–6998.
- 106J. G. Hernández, M. Turberg, I. Schiffers, C. Bolm, Chem. Eur. J. 2016, 22, 14513–14517.
- 107J. G. Hernández, N. A. J. Macdonald, C. Mottillo, I. S. Butler, T. Friščić, Green Chem. 2014, 16, 1087–1092.
- 108J.-L. Do, D. Tan, T. Friščić, Angew. Chem. Int. Ed. 2018, 57, 2667–2671; Angew. Chem. 2018, 130, 2697–2701.
- 109A. Beillard, T.-X. Mėtro, X. Bantreil, J. Martinez, F. Lamaty, Chem. Sci. 2017, 8, 1086–1089.
- 110H. Shy, P. Mackin, A. S. Orvieto, D. Gharbharan, G. R. Peterson, N. Bampos, T. D. Hamilton, Faraday Discuss. 2014, 170, 59–69.
- 111V. Declerck, P. Nun, J. Martinez, F. Lamaty, Angew. Chem. Int. Ed. 2009, 48, 9318–9321; Angew. Chem. 2009, 121, 9482–9485.
- 112
- 112aY. Yeboue, B. Gallard, N. Le Moigne, M. Jean, F. Lamaty, J. Martinez, T.-X. Mėtro, ACS Sustainable Chem. Eng. 2018, 6, 16001–16004;
- 112bV. Porte, M. Thioloy, T. Pigoux, T.-X. Mėtro, J. Martinez, F. Lamaty, Eur. J. Org. Chem. 2016, 3505–3508;
- 112cO. Maurin, P. Verdié, G. Subra, F. Lamaty, J. Martinez, T.-X. Mėtro, Beilstein J. Org. Chem. 2017, 13, 2087–2093.
- 113J. Bonnamour, T.-X. Mėtro, J. Martinez, F. Lamaty, Green Chem. 2013, 15, 1116–1120.
- 114V. Estévez, M. Villacampa, J. C. Menéndez, Org. Chem. Front. 2014, 1, 458–463.
- 115D. Tan, L. Loots, T. Friščić, Chem. Commun. 2016, 52, 7760–7781.
- 116J. B. Ravnsbæk, T. M. Swager, ACS Macro Lett. 2014, 3, 305–309.
- 117S. Grätz, B. Wolfrum, L. Borchardt, Green Chem. 2017, 19, 2973–2979.
- 118
- 118aS. Park, J. G. Kim, Beilstein J. Org. Chem. 2019, 15, 963–970;
- 118bN. Ohn, J. Shin, S. S. Kim, J. G. Kim, ChemSusChem 2017, 10, 3529–3533.
- 119B. G. Fiss, L. Hatherly, R. S. Stein, T. Friščić, A. Moores, ACS Sustainable Chem. Eng. 2019, 7, 7951–7959.
- 120T. Di Nardo, C. Hadad, A. N. V. Nhien, A. Moores, Green Chem. 2019, 21, 3276–3285.
- 121S. You, M.-W. Chen, D. D. Dlott, K. S. Suslick, Nat. Commun. 2015, 6, 6581.
- 122
- 122aC. L. Brown, S. L. Craig, Chem. Sci. 2015, 6, 2158–2165;
- 122bZ. Xia, V. D. Alphonse, D. B. Trigg, T. P. Harrigan, J. M. Paulson, Q. T. Luong, E. P. Lloyd, M. H. Barbee, S. L. Craig, Molecules 2019, 24, 542.
- 123G. De Bo, Chem. Sci. 2018, 9, 15–21.
- 124J.-L. Do, T. Friščić, Synlett 2017, 28, 2066–2092.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.