Mixed-Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design
Dr. Mohammad Yaser Masoomi
Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
Search for more papers by this authorCorresponding Author
Prof. Ali Morsali
Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
Search for more papers by this authorProf. Amarajothi Dhakshinamoorthy
School of Chemistry, Madurai Kamaraj University, Madurai-, 625 021 India
Search for more papers by this authorCorresponding Author
Prof. Hermenegildo Garcia
Dep. de Quimica y, Instituto Universitario de Tecnologia Quimica (CSIC-UPV), Universitat Politecnica de Valencia, Valencia, 46022 Spain
Search for more papers by this authorDr. Mohammad Yaser Masoomi
Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
Search for more papers by this authorCorresponding Author
Prof. Ali Morsali
Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
Search for more papers by this authorProf. Amarajothi Dhakshinamoorthy
School of Chemistry, Madurai Kamaraj University, Madurai-, 625 021 India
Search for more papers by this authorCorresponding Author
Prof. Hermenegildo Garcia
Dep. de Quimica y, Instituto Universitario de Tecnologia Quimica (CSIC-UPV), Universitat Politecnica de Valencia, Valencia, 46022 Spain
Search for more papers by this authorAbstract
Mixed-metal metal–organic frameworks (MM-MOFs) can be considered to be those MOFs having two different metals anywhere in the structure. Herein we summarize the various strategies for the preparation of MM-MOFs and some of their applications in adsorption, gas separation, and catalysis. It is shown that compared to homometallic MOFs, MM-MOFs bring about the opportunity to take advantage of the complexity and the synergism derived from the presence of different metal ions in the structure of MOFs. This is reflected in a superior performance and even stability of MM-MOFs respect to related single-metal MOFs. Emphasis is made on the use of MM-MOFs as catalysts for tandem reactions.
Conflict of interest
The authors declare no conflict of interest.
References
- 1M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'keeffe, O. M. Yaghi, Science 2002, 295, 469–472.
- 2D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. Int. Ed. 2009, 48, 7502–7513; Angew. Chem. 2009, 121, 7638–7649.
- 3G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science 2005, 309, 2040–2042.
- 4M. Y. Masoomi, A. Morsali, RSC Adv. 2013, 3, 19191–19218.
- 5M. Y. Masoomi, M. Bagheri, A. Morsali, Ultrason. Sonochem. 2017, 37, 244–250.
- 6M. Y. Masoomi, M. Bagheri, A. Morsali, RSC Adv. 2016, 6, 13272–13277.
- 7E. Tahmasebi, M. Y. Masoomi, Y. Yamini, A. Morsali, RSC Adv. 2016, 6, 40211–40218.
- 8M. Safari, Y. Yamini, M. Y. Masoomi, A. Morsali, A. Mani-Varnosfaderani, Microchim. Acta 2017, 184, 1555–1564.
- 9M. S. Rahmanifar, H. Hesari, A. Noori, M. Y. Masoomi, A. Morsali, M. F. Mousavi, Electrochim. Acta 2018, 275, 76–86.
- 10M. Bagheri, M. Y. Masoomi, A. Morsali, J. Hazard. Mater. 2017, 331, 142–149.
- 11M. Bagheri, M. Y. Masoomi, A. Morsali, ACS Catal. 2017, 7, 6949–6956.
- 12S. A. A. Razavi, M. Y. Masoomi, T. Islamoglu, A. Morsali, Y. Xu, J. T. Hupp, O. K. Farha, J. Wang, P. C. Junk, Inorg. Chem. 2017, 56, 2581–2588.
- 13S. A. A. Razavi, M. Y. Masoomi, A. Morsali, Chem. Eur. J. 2017, 23, 12559–12564.
- 14T. R. Cook, Y.-R. Zheng, P. J. Stang, Chem. Rev. 2013, 113, 734–777.
- 15H. Furukawa, U. Müller, O. M. Yaghi, Angew. Chem. Int. Ed. 2015, 54, 3417–3430; Angew. Chem. 2015, 127, 3480–3494.
- 16M. C. Das, S. Xiang, Z. Zhang, B. Chen, Angew. Chem. Int. Ed. 2011, 50, 10510–10520; Angew. Chem. 2011, 123, 10696–10707.
- 17B. Zhao, X.-Y. Chen, P. Cheng, D.-Z. Liao, S.-P. Yan, Z.-H. Jiang, J. Am. Chem. Soc. 2004, 126, 15394–15395.
- 18H. Guo, Y. Zhu, S. Qiu, J. A. Lercher, H. Zhang, Adv. Mater. 2010, 22, 4190–4192.
- 19G.-T. Vuong, M.-H. Pham, T.-O. Do, Dalton Trans. 2013, 42, 550–557.
- 20M. Dincǎ, J. R. Long, J. Am. Chem. Soc. 2007, 129, 11172–11176.
- 21C. Hon Lau, R. Babarao, M. R. Hill, Chem. Commun. 2013, 49, 3634–3636.
- 22B. Chen, S. Xiang, G. Qian, Acc. Chem. Res. 2010, 43, 1115–1124.
- 23H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
- 24K. M. Choi, H. M. Jeong, J. H. Park, Y.-B. Zhang, J. K. Kang, O. M. Yaghi, ACS Nano 2014, 8, 7451–7457.
- 25Y. Jiao, C. R. Morelock, N. C. Burtch, W. P. Mounfield, J. T. Hungerford, K. S. Walton, Ind. Eng. Chem. Res. 2015, 54, 12408–12414.
- 26N. Stock, S. Biswas, Chem. Rev. 2012, 112, 933–969.
- 27A. Dhakshinamoorthy, A. M. Asiri, H. Garcia, Catal. Sci. Technol. 2016, 6, 5238–5261.
- 28B. Li, Y. Xie, J. Huang, Y. Qian, Adv. Mater. 1999, 11, 1456–1459.
10.1002/(SICI)1521-4095(199912)11:17<1456::AID-ADMA1456>3.0.CO;2-3 CAS Web of Science® Google Scholar
- 29Y. Yue, P. F. Fulvio, S. Dai, Acc. Chem. Res. 2015, 48, 3044–3052.
- 30M. Y. Masoomi, K. C. Stylianou, A. Morsali, P. Retailleau, D. Maspoch, Cryst. Growth Des. 2014, 14, 2092–2096.
- 31V. Safarifard, A. Morsali, Coord. Chem. Rev. 2015, 292, 1–14.
- 32S. A. A. Razavi, M. Y. Masoomi, A. Morsali, Ultrason. Sonochem. 2017, 37, 502–508.
- 33S. R. Caskey, A. J. Matzger, Inorg. Chem. 2008, 47, 7942–7944.
- 34X.-J. Kong, Y.-P. Ren, L.-S. Long, R.-B. Huang, L.-S. Zheng, M. Kurmoo, CrystEngComm 2008, 10, 1309–1314.
- 35Y. Wang, B. Bredenkotter, B. Rieger, D. Volkmer, Dalton Trans. 2007, 689–696.
- 36J. He, J. Yu, Y. Zhang, Q. Pan, R. Xu, Inorg. Chem. 2005, 44, 9279–9282.
- 37Y. Zhang, B. Chen, F. R. Fronczek, A. W. Maverick, Inorg. Chem. 2008, 47, 4433–4435.
- 38A. Schoedel, A. J. Cairns, Y. Belmabkhout, L. Wojtas, M. Mohamed, Z. Zhang, D. M. Proserpio, M. Eddaoudi, M. J. Zaworotko, Angew. Chem. Int. Ed. 2013, 52, 2902–2905; Angew. Chem. 2013, 125, 2974–2977.
- 39S. Horike, R. Matsuda, D. Tanaka, S. Matsubara, M. Mizuno, K. Endo, S. Kitagawa, Angew. Chem. Int. Ed. Angew. Chem.Int. Ed. 2006, 45, 7226–7230.
- 40S. Nayak, K. Harms, S. Dehnen, Inorg. Chem. 2011, 50, 2714–2716.
- 41Z. Su, Z.-S. Bai, J. Fan, J. Xu, W.-Y. Sun, Cryst. Growth Des. 2009, 9, 5190–5196.
- 42L. J. Wang, H. Deng, H. Furukawa, F. Gándara, K. E. Cordova, D. Peri, O. M. Yaghi, Inorg. Chem. 2014, 53, 5881–5883.
- 43P.-F. Shi, H.-C. Hu, Z.-Y. Zhang, G. Xiong, B. Zhao, Chem. Commun. 2015, 51, 3985–3988.
- 44F.-N. Shi, A. R. Silva, T.-H. Yang, J. Rocha, CrystEngComm 2013, 15, 3776–3779.
- 45J. A. Botas, G. Calleja, M. Sánchez-Sánchez, M. G. Orcajo, Langmuir 2010, 26, 5300–5303.
- 46W.-C. Song, J.-R. Li, P.-C. Song, Y. Tao, Q. Yu, X.-L. Tong, X.-H. Bu, Inorg. Chem. 2009, 48, 3792–3799.
- 47C. Serre, F. Millange, C. Thouvenot, N. Gardant, F. Pelle, G. Ferey, J. Mater. Chem. 2004, 14, 1540–1543.
- 48P. Falcaro, S. Furukawa, Angew. Chem. Int. Ed. 2012, 51, 8431–8433; Angew. Chem. 2012, 124, 8557–8559.
- 49C. Livage, P. M. Forster, N. Guillou, M. M. Tafoya, A. K. Cheetham, G. Férey, Angew. Chem. Int. Ed. 2007, 46, 5877–5879; Angew. Chem. 2007, 119, 5981–5983.
- 50L. Xie, S. Liu, C. Gao, R. Cao, J. Cao, C. Sun, Z. Su, Inorg. Chem. 2007, 46, 7782–7788.
- 51J. H. Yoon, S. B. Choi, Y. J. Oh, M. J. Seo, Y. H. Jhon, T.-B. Lee, D. Kim, S. H. Choi, J. Kim, Catal. Today 2007, 120, 324–329.
- 52Y.-Z. Zheng, W. Xue, W.-X. Zhang, M.-L. Tong, X.-M. Chen, F. Grandjean, G. J. Long, S.-W. Ng, P. Panissod, M. Drillon, Inorg. Chem. 2009, 48, 2028–2042.
- 53X.-M. Zhang, Y.-Z. Zheng, C.-R. Li, W.-X. Zhang, X.-M. Chen, Cryst. Growth Des. 2007, 7, 980–983.
- 54J. Jia, X. Lin, C. Wilson, A. J. Blake, N. R. Champness, P. Hubberstey, G. Walker, E. J. Cussen, M. Schroder, Chem. Commun. 2007, 840–842.
- 55J. r. Lincke, D. Lässig, M. Kobalz, J. Bergmann, M. Handke, J. Möllmer, M. Lange, C. Roth, A. Möller, R. Staudt, Inorg. Chem. 2012, 51, 7579–7586.
- 56F.-N. Shi, L. s. Cunha-Silva, T. Trindade, F. A. A. Paz, J. Rocha, Cryst. Growth Des. 2009, 9, 2098–2109.
- 57M. Lammert, C. Glißmann, N. Stock, Dalton Trans. 2017, 46, 2425–2429.
- 58V. Sridharan, J. C. Menéndez, Chem. Rev. 2010, 110, 3805–3849.
- 59Y. Ren, X. Cheng, S. Yang, C. Qi, H. Jiang, Q. Mao, Dalton Trans. 2013, 42, 9930–9937.
- 60S. R. Halper, L. Do, J. R. Stork, S. M. Cohen, J. Am. Chem. Soc. 2006, 128, 15255–15268.
- 61M. C. Das, Q. Guo, Y. He, J. Kim, C.-G. Zhao, K. Hong, S. Xiang, Z. Zhang, K. M. Thomas, R. Krishna, B. Chen, J. Am. Chem. Soc. 2012, 134, 8703–8710.
- 62A. Schoedel, L. Wojtas, S. P. Kelley, R. D. Rogers, M. Eddaoudi, M. J. Zaworotko, Angew. Chem. Int. Ed. 2011, 50, 11421–11424; Angew. Chem. 2011, 123, 11623–11626.
- 63D. L. Murphy, M. R. Malachowski, C. F. Campana, S. M. Cohen, Chem. Commun. 2005, 5506–5508.
- 64B. Chen, F. R. Fronczek, A. W. Maverick, Inorg. Chem. 2004, 43, 8209–8211.
- 65S. R. Halper, S. M. Cohen, Inorg. Chem. 2005, 44, 486–488.
- 66J. R. Stork, V. S. Thoi, S. M. Cohen, Inorg. Chem. 2007, 46, 11213–11223.
- 67N. T. Nguyen, T. N. Lo, J. Kim, H. T. Nguyen, T. B. Le, K. E. Cordova, H. Furukawa, Inorg. Chem. 2016, 55, 6201–6207.
- 68W. Yuan, J. O'Connor, S. L. James, CrystEngComm 2010, 12, 3515–3517.
- 69M.-H. Xie, X.-L. Yang, C. Zou, C.-D. Wu, Inorg. Chem. 2011, 50, 5318–5320.
- 70Q. Lin, X. Bu, A. Kong, C. Mao, X. Zhao, F. Bu, P. Feng, J. Am. Chem. Soc. 2015, 137, 2235–2238.
- 71Q. Liu, H. Cong, H. Deng, J. Am. Chem. Soc. 2016, 138, 13822–13825.
- 72M. Lalonde, W. Bury, O. Karagiaridi, Z. Brown, J. T. Hupp, O. K. Farha, J. Mater. Chem. A 2013, 1, 5453–5468.
- 73S. Furukawa, K. Hirai, K. Nakagawa, Y. Takashima, R. Matsuda, T. Tsuruoka, M. Kondo, R. Haruki, D. Tanaka, H. Sakamoto, S. Shimomura, O. Sakata, S. Kitagawa, Angew. Chem. Int. Ed. 2009, 48, 1766–1770; Angew. Chem. 2009, 121, 1798–1802.
- 74X. Song, T. K. Kim, H. Kim, D. Kim, S. Jeong, H. R. Moon, M. S. Lah, Chem. Mater. 2012, 24, 3065–3073.
- 75B. Tu, Q. Pang, D. Wu, Y. Song, L. Weng, Q. Li, J. Am. Chem. Soc. 2014, 136, 14465–14471.
- 76A. M. Shultz, A. A. Sarjeant, O. K. Farha, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc. 2011, 133, 13252–13255.
- 77P. Deria, J. E. Mondloch, O. Karagiaridi, W. Bury, J. T. Hupp, O. K. Farha, Chem. Soc. Rev. 2014, 43, 5896–5912.
- 78D. Sun, W. Liu, M. Qiu, Y. Zhang, Z. Li, Chem. Commun. 2015, 51, 2056–2059.
- 79S. J. D. Smith, B. P. Ladewig, A. J. Hill, C. H. Lau, M. R. Hill, Sci. Rep. 2015, 5, 7823.
- 80S. Das, H. Kim, K. Kim, J. Am. Chem. Soc. 2009, 131, 3814–3815.
- 81F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock, D. E. De Vos, J. Am. Chem. Soc. 2013, 135, 11465–11468.
- 82M. Kim, J. F. Cahill, H. Fei, K. A. Prather, S. M. Cohen, J. Am. Chem. Soc. 2012, 134, 18082–18088.
- 83J. G. Santaclara, A. I. Olivos-Suarez, A. Gonzalez-Nelson, D. Osadchii, M. A. Nasalevich, M. A. van der Veen, F. Kapteijn, A. M. Sheveleva, S. L. Veber, M. V. Fedin, A. T. Murray, C. H. Hendon, A. Walsh, J. Gascon, Chem. Mater. 2017, 29, 8963–8967.
- 84S. Yang, X. Lin, A. J. Blake, G. S. Walker, P. Hubberstey, N. R. Champness, M. Schröder, Nat. Chem. 2009, 1, 487–493.
- 85J.-S. Qin, S.-R. Zhang, D.-Y. Du, P. Shen, S.-J. Bao, Y.-Q. Lan, Z.-M. Su, Chem. Eur. J. 2014, 20, 5625–5630.
- 86X.-P. Zhou, Z. Xu, M. Zeller, A. D. Hunter, Chem. Commun. 2009, 5439–5441.
- 87E. D. Bloch, D. Britt, C. Lee, C. J. Doonan, F. J. Uribe-Romo, H. Furukawa, J. R. Long, O. M. Yaghi, J. Am. Chem. Soc. 2010, 132, 14382–14384.
- 88J. S. Seo, D. Whang, H. Lee, S. Im Jun, Nature 2000, 404, 982.
- 89M. I. Gonzalez, E. D. Bloch, J. A. Mason, S. J. Teat, J. R. Long, Inorg. Chem. 2015, 54, 2995–3005.
- 90S. Hermes, M.-K. Schröter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R. W. Fischer, R. A. Fischer, Angew. Chem. Int. Ed. 2005, 44, 6237–6241; Angew. Chem. 2005, 117, 6394–6397.
- 91S. Hermes, F. Schroder, S. Amirjalayer, R. Schmid, R. A. Fischer, J. Mater. Chem. 2006, 16, 2464–2472.
- 92M. Müller, O. I. Lebedev, R. A. Fischer, J. Mater. Chem. 2008, 18, 5274–5281.
- 93M. Meilikhov, K. Yusenko, D. Esken, S. Turner, G. Van Tendeloo, R. A. Fischer, Eur. J. Inorg. Chem. 2010, 3701–3714.
- 94C. Wang, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2012, 134, 7211–7214.
- 95D. Sun, Z. Li, J. Phys. Chem. C 2016, 120, 19744–19750.
- 96M. Meilikhov, K. Yusenko, A. Torrisi, B. Jee, C. Mellot-Draznieks, A. Pöppl, R. A. Fischer, Angew. Chem. Int. Ed. 2010, 49, 6212–6215; Angew. Chem. 2010, 122, 6348–6351.
- 97G. Férey, F. Millange, M. Morcrette, C. Serre, M. L. Doublet, J. M. Grenèche, J. M. Tarascon, Angew. Chem. Int. Ed. 2007, 46, 3259–3263; Angew. Chem. 2007, 119, 3323–3327.
- 98M.-H. Zeng, B. Wang, X.-Y. Wang, W.-X. Zhang, X.-M. Chen, S. Gao, Inorg. Chem. 2006, 45, 7069–7076.
- 99M. Y. Masoomi, A. Morsali, Coord. Chem. Rev. 2012, 256, 2921–2943.
- 100S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu, D. Zhang, Q. Fang, S. Qiu, Inorg. Chem. Front. 2015, 2, 177–183.
- 101A. Dhakshinamoorthy, A. M. Asiri, H. Garcia, ACS Catal. 2019, 9, 1081–1102.
- 102A. Dhakshinamoorthy, Z. Li, H. Garcia, Chem. Soc. Rev. 2018, 47, 8134–8172.
- 103L. Zhu, X.-Q. Liu, H.-L. Jiang, L.-B. Sun, Chem. Rev. 2017, 117, 8129–8176.
- 104M. Giménez-Marqués, A. Santiago-Portillo, S. Navalón, M. Álvaro, F. Nouar, H. Garcia, C. Serre, unpublished results.
- 105D. Sun, F. Sun, X. Deng, Z. Li, Inorg. Chem. 2015, 54, 8639–8643.
- 106C. P. Krap, R. Newby, A. Dhakshinamoorthy, H. García, I. Cebula, T. L. Easun, M. Savage, J. E. Eyley, S. Gao, A. J. Blake, W. Lewis, P. H. Beton, M. R. Warren, D. R. Allan, M. D. Frogley, C. C. Tang, G. Cinque, S. Yang, M. Schröder, Inorg. Chem. 2016, 55, 1076–1088.
- 107M. R. Ghaleno, M. Ghaffari-Moghaddam, M. Khajeh, A. R. Oveisi, M. Bohlooli, J. Colloid Interface Sci. 2019, 535, 214–226.
- 108L. M. Aguirre-Díaz, F. Gándara, M. Iglesias, N. Snejko, E. Gutiérrez-Puebla, M. Á. Monge, J. Am. Chem. Soc. 2015, 137, 6132–6135.
- 109L. Mitchell, P. Williamson, B. Ehrlichová, A. E. Anderson, V. R. Seymour, S. E. Ashbrook, N. Acerbi, L. M. Daniels, R. I. Walton, M. L. Clarke, Chem. Eur. J. 2014, 20, 17185–17197.
- 110M. Yadollahi, H. Hamadi, V. Nobakht, Appl. Org. Chem. 2019, 33, e 4819.
- 111A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R. A. Fischer, Chem. Soc. Rev. 2014, 43, 6062–6096.
- 112M. Alvaro, S. Navalon, H. Garcia, unpublished results.
- 113J. He, J.-X. Zhang, C.-K. Tsang, Z. Xu, Y.-G. Yin, D. Li, S.-W. Ng, Inorg. Chem. 2008, 47, 7948–7950.
- 114S.-S. Chen, Q. Liu, Y. Zhao, R. Qiao, L.-Q. Sheng, Z.-D. Liu, S. Yang, C.-F. Song, Cryst. Growth Des. 2014, 14, 3727–3741.
- 115M. I. Breeze, G. Clet, B. C. Campo, A. Vimont, M. Daturi, J.-M. Grenèche, A. J. Dent, F. Millange, R. I. Walton, Inorg. Chem. 2013, 52, 8171–8182.
- 116P. Kar, R. Haldar, C. J. Gómez-García, A. Ghosh, Inorg. Chem. 2012, 51, 4265–4273.
- 117M. Y. Masoomi, M. Bagheri, A. Morsali, P. C. Junk, Inorg. Chem. Front. 2016, 3, 944–951.
- 118T.-H. Xie, X. Sun, J. Lin, J. Phys. Chem. C 2008, 112, 9753–9759.
- 119W. Lin, H. Frei, J. Am. Chem. Soc. 2005, 127, 1610–1611.
- 120R. Nakamura, A. Okamoto, H. Osawa, H. Irie, K. Hashimoto, J. Am. Chem. Soc. 2007, 129, 9596–9597.
- 121A. Santiago Portillo, H. G. Baldoví, M. T. Garcia Fernandez, S. Navalón, P. Atienzar, B. Ferrer, M. Alvaro, H. Garcia, Z. Li, J. Phys. Chem. C 2017, 121, 7015–7024.
- 122A. Thirumurugan, A. K. Cheetham, Eur.J. Inorg. Chem. 2010, 2010, 3823–3828.
- 123D. Sarma, M. Prabu, S. Biju, M. L. P. Reddy, S. Natarajan, Eur. J. Inorg. Chem. 2010, 3813–3822.
- 124D. T. de Lill, A. de Bettencourt-Dias, C. L. Cahill, Inorg. Chem. 2007, 46, 3960–3965.
- 125P. C. R. Soares-Santos, L. Cunha-Silva, F. A. A. Paz, R. A. S. Ferreira, J. Rocha, T. Trindade, L. D. Carlos, H. I. S. Nogueira, Cryst. Growth Des. 2008, 8, 2505–2516.
- 126Y. Liu, M. Pan, Q.-Y. Yang, L. Fu, K. Li, S.-C. Wei, C.-Y. Su, Chem. Mater. 2012, 24, 1954–1960.
- 127D. F. Sava, L. E. S. Rohwer, M. A. Rodriguez, T. M. Nenoff, J. Am. Chem. Soc. 2012, 134, 3983–3986.
- 128Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, B. Chen, J. Am. Chem. Soc. 2012, 134, 3979–3982.
- 129X. Rao, T. Song, J. Gao, Y. Cui, Y. Yang, C. Wu, B. Chen, G. Qian, J. Am. Chem. Soc. 2013, 135, 15559–15564.
- 130B. Tu, Q. Pang, E. Ning, W. Yan, Y. Qi, D. Wu, Q. Li, J. Am. Chem. Soc. 2015, 137, 13456–13459.
- 131R. Kitaura, G. Onoyama, H. Sakamoto, R. Matsuda, S.-i. Noro, S. Kitagawa, Angew. Chem. Int. Ed. 2004, 43, 2684–2687; Angew. Chem. 2004, 116, 2738–2741.
- 132H. Sakamoto, R. Matsuda, S. Bureekaew, D. Tanaka, S. Kitagawa, Chem. Eur. J. 2009, 15, 4985–4989.
- 133B. Chen, X. Zhao, A. Putkham, K. Hong, E. B. Lobkovsky, E. J. Hurtado, A. J. Fletcher, K. M. Thomas, J. Am. Chem. Soc. 2008, 130, 6411–6423.
- 134J. Ferrando-Soria, P. Serra-Crespo, M. de Lange, J. Gascon, F. Kapteijn, M. Julve, J. Cano, F. Lloret, J. Pasán, C. Ruiz-Pérez, Y. Journaux, E. Pardo, J. Am. Chem. Soc. 2012, 134, 15301–15304.
- 135S.-C. Xiang, Z. Zhang, C.-G. Zhao, K. Hong, X. Zhao, D.-R. Ding, M.-H. Xie, C.-D. Wu, M. C. Das, R. Gill, Nat. Commun. 2011, 2, 204.
- 136Z. Zhang, S. Xiang, K. Hong, M. C. Das, H. D. Arman, M. Garcia, J. U. Mondal, K. M. Thomas, B. Chen, Inorg. Chem. 2012, 51, 4947–4953.
- 137A. M. Shultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc. 2009, 131, 4204–4205.
- 138S.-H. Cho, B. Ma, S. T. Nguyen, J. T. Hupp, T. E. Albrecht-Schmitt, Chem. Commun. 2006, 2563–2565.
- 139F. Song, C. Wang, J. M. Falkowski, L. Ma, W. Lin, J. Am. Chem. Soc. 2010, 132, 15390–15398.
- 140L. Chen, S. Rangan, J. Li, H. Jiang, Y. Li, Green Chem. 2014, 16, 3978–3985.
- 141S. Yuan, J.-S. Qin, J. Li, L. Huang, L. Feng, Y. Fang, C. Lollar, J. Pang, L. Zhang, D. Sun, A. Alsalme, T. Cagin, H.-C. Zhou, Nature Commun. 2018, 9, 808.
- 142P. Elumalai, H. Mamlouk, W. Yiming, L. Feng, S. Yuan, H.-C. Zhou, S. T. Madrahimov, ACS Appl. Mater. Interfaces 2018, 10, 41431–41438.
- 143K. Manna, T. Zhang, F. X. Greene, W. Lin, J. Am. Chem. Soc. 2015, 137, 2665–2673.
- 144C.-C. Hou, T.-T. Li, S. Cao, Y. Chen, W.-F. Fu, J. Mater. Chem. A 2015, 3, 10386–10394.
- 145C. Wang, Z. Xie, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2011, 133, 13445–13454.
- 146B. D. Chandler, A. P. Cote, D. T. Cramb, J. M. Hill, G. K. H. Shimizu, Chem. Commun. 2002, 1900–1901.
- 147B. D. Chandler, D. T. Cramb, G. K. H. Shimizu, J. Am. Chem. Soc. 2006, 128, 10403–10412.
- 148B. D. Chandler, J. O. Yu, D. T. Cramb, G. K. H. Shimizu, Chem. Mater. 2007, 19, 4467–4473.
- 149Z. Xie, L. Ma, K. E. deKrafft, A. Jin, W. Lin, J. Am. Chem. Soc. 2010, 132, 922–923.
- 150C. A. Kent, B. P. Mehl, L. Ma, J. M. Papanikolas, T. J. Meyer, W. Lin, J. Am. Chem. Soc. 2010, 132, 12767–12769.
- 151Y. Liu, G. Li, X. Li, Y. Cui, Angew. Chem. Int. Ed. 2007, 46, 6301–6304; Angew. Chem. 2007, 119, 6417–6420.
- 152C.-D. Wu, W. Lin, Angew. Chem. Int. Ed. 2007, 46, 1075–1078; Angew. Chem. 2007, 119, 1093–1096.
- 153L. Ma, C.-D. Wu, M. M. Wanderley, W. Lin, Angew. Chem. Int. Ed. 2010, 49, 8244–8248; Angew. Chem. 2010, 122, 8420–8424.
- 154C.-D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940–8941.
- 155C. Bai, S. Jian, X. Yao, Y. Li, Catal. Sci. Technol. 2014, 4, 3261–3267.
- 156H. Fei, S. M. Cohen, Chem. Commun. 2014, 50, 4810–4812.
- 157A. Dhakshinamoorthy, H. Garcia, Chem. Soc. Rev. 2012, 41, 5262–5284.
- 158B. Yuan, Y. Pan, Y. Li, B. Yin, H. Jiang, Angew. Chem. Int. Ed. 2010, 49, 4054–4058; Angew. Chem. 2010, 122, 4148–4152.
- 159Y. Huang, Z. Zheng, T. Liu, J. Lü, Z. Lin, H. Li, R. Cao, Catal. Commun. 2011, 14, 27–31.
- 160M. Zhang, J. Guan, B. Zhang, D. Su, C. Williams, C. Liang, Catal. Lett. 2012, 142, 313–318.
- 161Q. Yang, Q. Xu, H.-L. Jiang, Chem. Soc. Rev. 2017, 46, 4774–4808.
- 162A. Dhakshinamoorthy, A. M. Asiri, H. Garcia, ACS Catal. 2017, 7, 2896–2919.
- 163D. Wang, Z. Li, J. Catal. 2016, 342, 151–157.
- 164D. Wang, Y. Pan, L. Xu, Z. Li, J. Catal. 2018, 361, 248–254.
- 165D. Sun, M. Xu, Y. Jiang, J. Long, Z. Li, Small Methods 2018, 2, 1800164.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.