Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System
Dr. Sheng Yang
Chair of Molecular Functional Materials and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
Search for more papers by this authorPanpan Zhang
Chair of Molecular Functional Materials and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
Search for more papers by this authorFaxing Wang
Chair of Molecular Functional Materials and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
Search for more papers by this authorAntonio Gaetano Ricciardulli
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Search for more papers by this authorDr. Martin R. Lohe
Chair of Molecular Functional Materials and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
Search for more papers by this authorProf. Paul W. M. Blom
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Search for more papers by this authorCorresponding Author
Prof. Xinliang Feng
Chair of Molecular Functional Materials and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
Search for more papers by this authorDr. Sheng Yang
Chair of Molecular Functional Materials and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
Search for more papers by this authorPanpan Zhang
Chair of Molecular Functional Materials and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
Search for more papers by this authorFaxing Wang
Chair of Molecular Functional Materials and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
Search for more papers by this authorAntonio Gaetano Ricciardulli
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Search for more papers by this authorDr. Martin R. Lohe
Chair of Molecular Functional Materials and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
Search for more papers by this authorProf. Paul W. M. Blom
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Search for more papers by this authorCorresponding Author
Prof. Xinliang Feng
Chair of Molecular Functional Materials and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
Search for more papers by this authorAbstract
Two-dimensional (2D) titanium carbide (Ti3C2) is emerging as an important member of the MXene family. However, fluoride-based synthetic procedures remain an impediment to the practical applications of this promising class of materials. Here we demonstrate an efficient fluoride-free etching method based on the anodic corrosion of titanium aluminium carbide (Ti3AlC2) in a binary aqueous electrolyte. The dissolution of aluminium followed by in situ intercalation of ammonium hydroxide results in the extraction of carbide flakes (Ti3C2Tx, T=O, OH) with sizes up to 18.6 μm and high yield (over 90 %) of mono- and bilayers. All-solid-state supercapacitor based on exfoliated sheets exhibits high areal and volumetric capacitances of 220 mF cm−2 and 439 F cm−3, respectively, at a scan rate of 10 mV s−1, superior to those of LiF/HCl-etched MXenes. Our strategy paves a safe way to the scalable synthesis and application of MXene materials.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201809662-sup-0001-misc_information.pdf1.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Naguib, Y. Gogotsi, Acc. Chem. Res. 2015, 48, 128–135;
- 1bM. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, Adv. Mater. 2014, 26, 992–1005;
- 1cB. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2017, 2, 16098;
- 1dP. Zhang, F. Wang, M. Yu, X. Zhuang, X. Feng, Chem. Soc. Rev. 2018, 47, 7426–7451.
- 2J. Ran, G. Gao, F.-T. Li, T.-Y. Ma, A. Du, S.-Z. Qiao, Nat. Commun. 2017, 8, 13907.
- 3
- 3aM. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M. W. Barsoum, Nature 2014, 516, 78;
- 3bH. Li, Y. Hou, F. Wang, M. R. Lohe, X. Zhuang, L. Niu, X. Feng, Adv. Energy Mater. 2017, 7, 1601847;
- 3cD. Er, J. Li, M. Naguib, Y. Gogotsi, V. B. Shenoy, ACS Appl. Mater. Interfaces 2014, 6, 11173–11179.
- 4L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro, H. Wang, Angew. Chem. Int. Ed. 2017, 56, 1825–1829; Angew. Chem. 2017, 129, 1851–1855.
- 5R. Li, L. Zhang, L. Shi, P. Wang, ACS Nano 2017, 11, 3752–3759.
- 6B. Xu, M. Zhu, W. Zhang, X. Zhen, Z. Pei, Q. Xue, C. Zhi, P. Shi, Adv. Mater. 2016, 28, 3333–3339.
- 7P. Srivastava, A. Mishra, H. Mizuseki, K.-R. Lee, A. K. Singh, ACS Appl. Mater. Interfaces 2016, 8, 24256–24264.
- 8M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248–4253.
- 9J. Halim, M. R. Lukatskaya, K. M. Cook, J. Lu, C. R. Smith, L.-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, M. W. Barsoum, Chem. Mater. 2014, 26, 2374–2381.
- 10M. R. Lukatskaya, S.-M. Bak, X. Yu, X.-Q. Yang, M. W. Barsoum, Y. Gogotsi, Adv. Energy Mater. 2015, 5, 1500589.
- 11
- 11aS. Yang, A. G. Ricciardulli, S. Liu, R. Dong, M. R. Lohe, A. Becker, M. A. Squillaci, P. Samorì, K. Müllen, X. Feng, Angew. Chem. Int. Ed. 2017, 56, 6669–6675; Angew. Chem. 2017, 129, 6770–6776;
- 11bS. Yang, K. Zhang, A. G. Ricciardulli, P. Zhang, Z. Liao, M. R. Lohe, E. Zschech, P. W. M. Blom, W. Pisula, K. Müllen, X. Feng, Angew. Chem. Int. Ed. 2018, 57, 4677–4681; Angew. Chem. 2018, 130, 4767–4771.
- 12M. R. Lukatskaya, J. Halim, B. Dyatkin, M. Naguib, Y. S. Buranova, M. W. Barsoum, Y. Gogotsi, Angew. Chem. Int. Ed. 2014, 53, 4877–4880; Angew. Chem. 2014, 126, 4977–4980.
- 13W. Sun, S. A. Shah, Y. Chen, Z. Tan, H. Gao, T. Habib, M. Radovic, M. J. Green, J. Mater. Chem. A 2017, 5, 21663–21668.
- 14
- 14aG. D. Sulka, K. G. Parkoła, Electrochim. Acta 2007, 52, 1880–1888;
- 14bJ. Flis, L. Kowalczyk, J. Appl. Electrochem. 1995, 25, 501–507.
- 15T. Li, L. Yao, Q. Liu, J. Gu, R. Luo, J. Li, X. Yan, W. Wang, P. Liu, B. Chen, W. Zhang, W. Abbas, R. Naz, D. Zhang, Angew. Chem. Int. Ed. 2018, 57, 6115–6119; Angew. Chem. 2018, 130, 6223–6227.
- 16
- 16aF. J. Burger, V. F. G. Tull, Nature 1953, 172, 729;
- 16bR. S. Alwitt, H. Uchi, T. R. Beck, R. C. Alkire, J. Electrochem. Soc. 1984, 131, 13–17.
- 17M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall′Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi, Science 2013, 341, 1502–1505.
- 18V. Mišković-Stanković, I. Jevremović, I. Jung, K. Rhee, Carbon 2014, 75, 335–344.
- 19M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Chem. Mater. 2017, 29, 7633–7644.
- 20
- 20aA. Lipatov, M. Alhabeb, M. R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, Adv. Electron. Mater. 2016, 2, 1600255;
- 20bF. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. Man Hong, C. M. Koo, Y. Gogotsi, Science 2016, 353, 1137–1140.
- 21A. D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 92, 5397–5403.
- 22M. Yizhak, J. Chem. Phys. 2012, 137, 154501.
- 23V. M. Hong Ng, H. Huang, K. Zhou, P. S. Lee, W. Que, J. Z. Xu, L. B. Kong, J. Mater. Chem. A 2017, 5, 3039–3068.
- 24X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu, L. Chen, J. Am. Chem. Soc. 2015, 137, 2715–2721.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.