Benzofulvenes in Trienamine Catalysis: Stereoselective Spiroindene Synthesis
Bjarke S. Donslund
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
Search for more papers by this authorRune Pagh Nielsen
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
Search for more papers by this authorSofie M. N. Mønsted
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
Search for more papers by this authorCorresponding Author
Prof. Karl Anker Jørgensen
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
Search for more papers by this authorBjarke S. Donslund
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
Search for more papers by this authorRune Pagh Nielsen
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
Search for more papers by this authorSofie M. N. Mønsted
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
Search for more papers by this authorCorresponding Author
Prof. Karl Anker Jørgensen
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
Search for more papers by this authorAbstract
The asymmetric formation of spiroindenes containing up to four contiguous stereocenters from the reaction of benzofulvenes with 2,4-dienals through trienamine catalysis is described. The benzofulvene core was found to be an excellent starting point for the synthesis of interesting spiroindenes through a formal cycloaddition pathway. The reaction was mediated by a diphenylprolinol silyl ether catalyst, and a diverse array of spiroindenes were obtained in high yields with excellent stereoselectivity. An attractive feature of the developed system is the possibility to diversify the product scaffold significantly by further manipulation of the chiral spiroindenes. Thus, three intramolecular ring-closing reactions following the organocatalytic step resulted in highly complex polycyclic systems.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201605079-sup-0001-misc_information.pdf7.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1See, for example:
- 1aA. Cappelli, G. P. Mohr, M. Anzini, S. Vomero, A. Donati, M. Casolaro, R. Mendichi, G. Giorgi, F. Makovec, J. Org. Chem. 2003, 68, 9473–9476;
- 1bA. Cappelli, S. Galeazzi, I. Zanardi, V. Travagli, M. Anzini, R. Mendichi, S. Petralito, A. Memoli, E. Paccagnini, W. Peris, A. Giordani, F. Makovec, M. Fresta, S. Vomero, J. Nanopart. Res. 2010, 12, 895–903;
- 1cY. Kosaka, K. Kitazawa, S. Inomata, T. Ishizone, ACS Macro Lett. 2013, 2, 164–167;
- 1dY. Kosaka, S. Kawauchi, R. Goseki, T. Ishizone, Macromolecules 2015, 48, 4421–4430.
- 2See, for example:
- 2aT. D. Lash, D. A. Colby, A. S. Idate, R. N. Davis, J. Am. Chem. Soc. 2007, 129, 13800–13801;
- 2bL. M. Stateman, T. D. Lash, Org. Lett. 2015, 17, 4522–4525.
- 3A single example of an asymmetric Sharpless epoxidation of a benzofulvene containing an allylic alcohol has been disclosed: A. G. Myers, P. J. Proteau, T. M. Handel, J. Am. Chem. Soc. 1988, 110, 7212–7214.
- 4
- 4aC. M. Marson, Chem. Soc. Rev. 2011, 40, 5514–5533;
- 4bY. Zheng, C. M. Tice, S. B. Singh, Bioorg. Med. Chem. Lett. 2014, 24, 3673–3682.
- 5L. K. Smith, I. R. Baxendale, Org. Biomol. Chem. 2015, 13, 9907–9933.
- 6For a review on organocatalytic asymmetric spirooxindole synthesis, see:
- 6aD. Cheng, Y. Ishihara, B. Tan, C. F. Barbas III, ACS Catal. 2014, 4, 743–762; for selected examples, see:
- 6bG. Bencivenni, L.-Y. Wu, A. Mazzanti, B. Giannichi, F. Pesciaioli, M.-P. Song, G. Bartoli, P. Melchiorre, Angew. Chem. Int. Ed. 2009, 48, 7200–7203; Angew. Chem. 2009, 121, 7336–7339;
- 6cV. P. R. Gajulapalli, K. Lokesh, M. Vishwanath, V. Kesavan, RSC Adv. 2016, 6, 12180–12184;
- 6dX. Han, W.-L. Chan, W. Yao, Y. Wang, Y. Lu, Angew. Chem. Int. Ed. 2016, 55, 6492–6496; Angew. Chem. 2016, 128, 6602–6606;
- 6eX.-H. Chen, Q. Wei, S.-W. Luo, H. Xiao, L.-Z. Gong, J. Am. Chem. Soc. 2009, 131, 13819–13825;
- 6fB. Tan, N. R. Candeias, C. F. Barbas III, J. Am. Chem. Soc. 2011, 133, 4672–4675;
- 6gY. Liu, M. Nappi, E. Arceo, S. Vera, P. Melchiorre, J. Am. Chem. Soc. 2011, 133, 15212–15218;
- 6hB. Tan, G. Hernández-Torres, C. F. Barbas III, J. Am. Chem. Soc. 2011, 133, 12354–12357;
- 6iM.-Y. Wu, W.-W. He, X.-Y. Liu, B. Tan, Angew. Chem. Int. Ed. 2015, 54, 9409–9413; Angew. Chem. 2015, 127, 9541–9545;
- 6jJ.-L. Li, B. Sahoo, C.-G. Daniliuc, F. Glorius, Angew. Chem. Int. Ed. 2014, 53, 10515–10519; Angew. Chem. 2014, 126, 10683–10687; for a general review on catalytic asymmetric spirocycle formation, see:
- 6kA. K. Franz, N. V. Hanhan, N. R. Ball-Jones, ACS Catal. 2013, 3, 540–553.
- 7For rhodium-catalyzed asymmetric spiroindene formation, see:
- 7aJ. Zheng, S.-B. Wang, C. Zheng, S.-L. You, J. Am. Chem. Soc. 2015, 137, 4880–4883;
- 7bS. Reddy Chidipudi, D. J. Burns, I. Khan, H. W. Lam, Angew. Chem. Int. Ed. 2015, 54, 13975–13979; Angew. Chem. 2015, 127, 14181–14185;
- 7cM. V. Pham, N. Cramer, Chem. Eur. J. 2016, 22, 2270–2273.
- 8
- 8a Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications, Vol. 3 (Ed. ), Wiley-VCH, Weinheim, 2013; for a relevant example of organocatalysis involving fulvenes, see:
- 8bY. Hayashi, H. Gotoh, M. Honma, K. Sankar, I. Kumar, H. Ishikawa, K. Konno, H. Yui, S. Tsuzuki, T. Uchimaru, J. Am. Chem. Soc. 2011, 133, 20175–20185.
- 9For a review, see:
- 9aI. Kumar, P. Ramaraju, N. A. Mir, Org. Biomol. Chem. 2013, 11, 709–716; for a seminal report, see:
- 9bZ.-J. Jia, H. Jiang, J.-L. Li, B. Gschwend, Q.-Z. Li, X. Yin, J. Grouleff, Y.-C. Chen, K. A. Jørgensen, J. Am. Chem. Soc. 2011, 133, 5053–5061; for selected examples, see:
- 9cA. Monleón, F. Glaus, S. Vergura, K. A. Jørgensen, Angew. Chem. Int. Ed. 2016, 55, 2478–2482; Angew. Chem. 2016, 128, 2524–2528;
- 9dJ.-L. Li, C.-Z. Yue, P.-Q. Chen, Y.-C. Xiao, Y.-C. Chen, Angew. Chem. Int. Ed. 2014, 53, 5449–5452; Angew. Chem. 2014, 126, 5553–5556;
- 9eX.-F. Xiong, Q. Zhou, J. Gu, L. Dong, T.-Y. Liu, Y.-C. Chen, Angew. Chem. Int. Ed. 2012, 51, 4401–4404; Angew. Chem. 2012, 124, 4477–4480;
- 9fY. Liu, M. Nappi, E. Arceo, S. Vera, P. Melchiorre, J. Am. Chem. Soc. 2011, 133, 15212–15218;
- 9gH. Jiang, D. C. Cruz, Y. Li, V. H. Lauridsen, K. A. Jørgensen, J. Am. Chem. Soc. 2013, 135, 5200–5207;
- 9hC. Ma, Z.-J. Jia, J.-X. Liu, Q.-Q. Zhou, L. Dong, Y.-C. Chen, Angew. Chem. Int. Ed. 2013, 52, 948–951; Angew. Chem. 2013, 125, 982–985;
- 9iZ.-J. Jia, Q. Zhou, Q.-Q. Zhou, P.-Q. Chen, Y.-C. Chen, Angew. Chem. Int. Ed. 2011, 50, 8638–8641; Angew. Chem. 2011, 123, 8797–8800;
- 9jL. Prieto, G. Talavera, U. Uria, E. Reyes, J. L. Vicario, L. Carrillo, Chem. Eur. J. 2014, 20, 2145–2148.
- 10
- 10aY. L. Zhang, H. M. Ge, W. Zhao, H. Dong, Q. Xu, S. H. Li, J. Li, J. Zhang, Y. C. Song, R. X. Tan, Angew. Chem. Int. Ed. 2008, 47, 5823–5826; Angew. Chem. 2008, 120, 5907–5910;
- 10bS. A. Snyder, T. C. Sherwood, A. G. Ross, Angew. Chem. Int. Ed. 2010, 49, 5146–5150; Angew. Chem. 2010, 122, 5272–5276.
- 11C.-K. Kim, J.-K. Woo, S.-H. Kim, E. Cho, Y.-J. Lee, H.-S. Lee, C. J. Sim, D.-C. Oh, K.-B. Oh, J. Shin, J. Nat. Prod. 2015, 78, 2814–2821.
- 12
- 12aH. Omar, N. M. Hashim, A. Zajmi, N. Nordin, S. I. Abdelwahab, A. H. S. Azizan, A. H. A. Hadi, H. M. Ali, Molecules 2013, 18, 8994–9009;
- 12bF. Věžník, P. Sedmera, V. Preininger, V. Šimánek, J. Slavík, Phytochemistry 1981, 20, 347–348.
- 13For a recent review on diarylprolinol silyl ether catalysts, see:
- 13aB. S. Donslund, T. K. Johansen, P. H. Poulsen, K. S. Halskov, K. A. Jørgensen, Angew. Chem. Int. Ed. 2015, 54, 13860–13874; Angew. Chem. 2015, 127, 14066–14081; for initial reports, see:
- 13bM. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jørgensen, Angew. Chem. Int. Ed. 2005, 44, 794–797; Angew. Chem. 2005, 117, 804–807;
- 13cY. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem. Int. Ed. 2005, 44, 4212–4215; Angew. Chem. 2005, 117, 4284–4287.
- 14
- 14aA. Dieckmann, M. Breugst, K. N. Houk, J. Am. Chem. Soc. 2013, 135, 3237–3242;
- 14bZ. Su, C. K. Kim, Org. Biomol. Chem. 2015, 13, 6313–6324.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.