Direct Synthesis of Silylamine from N2 and a Silane: Mediated by a Tridentate Phosphine Molybdenum Fragment
Dr. Qian Liao
Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062 Toulouse, France
Search for more papers by this authorAnthony Cavaillé
Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062 Toulouse, France
Search for more papers by this authorDr. Nathalie Saffon-Merceron
Institut de Chimie de Toulouse ICT-FR2599, Université Paul Sabatier, 31062 Toulouse Cedex, France
Search for more papers by this authorCorresponding Author
Dr. Nicolas Mézailles
Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062 Toulouse, France
Search for more papers by this authorDr. Qian Liao
Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062 Toulouse, France
Search for more papers by this authorAnthony Cavaillé
Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062 Toulouse, France
Search for more papers by this authorDr. Nathalie Saffon-Merceron
Institut de Chimie de Toulouse ICT-FR2599, Université Paul Sabatier, 31062 Toulouse Cedex, France
Search for more papers by this authorCorresponding Author
Dr. Nicolas Mézailles
Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062 Toulouse, France
Search for more papers by this authorAbstract
A homogeneous system which is able to yield silylamine from N2 and bis(silane) in one pot is reported. Mechanistically a {(triphosphine)molybdenum(I)} fragment, generated in situ, splits N2 into the corresponding nitrido complex at room temperature. Then, functionalization of the molybdenum nitrido is achieved by double Si−H addition under mild reaction conditions. Moreover, the bis(silyl)amine product is decoordinated from the metal center.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201604812-sup-0001-misc_information.pdf997.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Jia, E. A. Quadrelli, Chem. Soc. Rev. 2014, 43, 547.
- 2B. M. Hoffman, D. Lukoyanov, Z.-Y. Yang, D. R. Dean, L. C. Seefeldt, Chem. Rev. 2014, 114, 4041.
- 3
- 3aD. V. Yandulov, R. R. Schrock, Science 2003, 301, 76;
- 3bK. Arashiba, Y. Miyake, Y. Nishibayashi, Nat. Chem. 2011, 3, 120;
- 3cE. Kinoshita, K. Arashiba, S. Kuriyama, Y. Miyake, R. Shimazaki, H. Nakanishi, Y. Nishibayashi, Organometallics 2012, 31, 8437;
- 3dJ. S. Anderson, J. Rittle, J. C. Peters, Nature 2013, 501, 84;
- 3eT. Ogawa, Y. Kajita, Y. Wasada-Tsutsui, H. Wasada, H. Masuda, Inorg. Chem. 2013, 52, 182;
- 3fH. Tanaka, K. Arashiba, S. Kuriyama, K. Nakajima, Y. Nishibayashi, A. Sasada, K. Yoshizawa, Nat. Commun. 2014, 5, 3737;
- 3gS. Kuriyama, K. Arashiba, K. Nakajima, H. Tanaka, N. Kamaru, K. Yoshizawa, Y. Nishibayashi, J. Am. Chem. Soc. 2014, 136, 9719;
- 3hS. E. Creutz, J. C. Peters, J. Am. Chem. Soc. 2014, 136, 1105;
- 3iK. Arashiba, E. Kinoshita, S. Kuriyama, A. Eizawa, K. Nakajima, H. Tanaka, K. Yoshizawa, Y. Nishibayashi, J. Am. Chem. Soc. 2015, 137, 5666;
- 3jE. Kinoshita, K. Arashiba, S. Kuriyama, A. Eizawa, K. Nakajima, Y. Nishibayashi, Eur. J. Inorg. Chem. 2015, 1789;
- 3kS. Kuriyama, K. Arashiba, K. Nakajima, H. Tanaka, K. Yoshizawa, Y. Nishibayashi, Chem. Sci. 2015, 6, 3940.
- 4
- 4aK. Shiina, J. Am. Chem. Soc. 1972, 94, 9266;
- 4bK. Komori, H. Oshita, Y. Mizobe, M. Hidai, J. Am. Chem. Soc. 1989, 111, 1939;
- 4cH. Tanaka, A. Sasada, T. Kouno, M. Yuki, Y. Miyake, H. Nakanishi, Y. Nishibayashi, K. Yoshizawa, J. Am. Chem. Soc. 2011, 133, 3498;
- 4dM. Yuki, H. Tanaka, K. Sasaki, Y. Miyake, K. Yoshizawa, Y. Nishibayashi, Nat. Commun. 2012, 3, 1254;
- 4eQ. Liao, N. Saffon-Merceron, N. Mézailles, Angew. Chem. Int. Ed. 2014, 53, 14206; Angew. Chem. 2014, 126, 14430;
- 4fR. Imayoshi, H. Tanaka, Y. Matsuo, M. Yuki, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, Chem. Eur. J. 2015, 21, 8905;
- 4gG. Ung, J. C. Peters, Angew. Chem. Int. Ed. 2015, 54, 532; Angew. Chem. 2015, 127, 542;
- 4hR. B. Siedschlag, V. Bernales, K. D. Vogiatzis, N. Planas, L. J. Clouston, E. Bill, L. Gagliardi, C. C. Lu, J. Am. Chem. Soc. 2015, 137, 4638.
- 5T. Shima, S. Hu, G. Luo, X. Kang, Y. Luo, Z. Hou, Science 2013, 340, 1549.
- 6
- 6aK. Honkala, A. Hellman, I. N. Remediakis, A. Logadottir, A. Carlsson, S. Dahl, C. H. Christensen, J. K. Nørskov, Science 2005, 307, 555;
- 6bG. Ertl, Angew. Chem. Int. Ed. 2008, 47, 3524; Angew. Chem. 2008, 120, 3578.
- 7
- 7aM. D. Fryzuk, J. B. Love, S. J. Rettig, V. G. Young, Science 1997, 275, 1445;
- 7bM. D. Fryzuk, B. A. MacKay, S. A. Johnson, B. O. Patrick, Angew. Chem. Int. Ed. 2002, 41, 3709;
10.1002/1521-3773(20021004)41:19<3709::AID-ANIE3709>3.0.CO;2-U CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 3861;
- 7cM. D. Fryzuk, B. A. MacKay, B. O. Patrick, J. Am. Chem. Soc. 2003, 125, 3234;
- 7dM. Hirotsu, P. P. Fontaine, A. Epshteyn, P. Y. Zavalij, L. R. Sita, J. Am. Chem. Soc. 2007, 129, 9284;
- 7eM. Hirotsu, P. P. Fontaine, P. Y. Zavalij, L. R. Sita, J. Am. Chem. Soc. 2007, 129, 12690;
- 7fM. D. Fryzuk, Acc. Chem. Res. 2009, 42, 127;
- 7gS. P. Semproni, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2011, 133, 10406.
- 8N. Khoenkhoen, B. de Bruin, J. N. H. Reek, W. I. Dzik, Eur. J. Inorg. Chem. 2015, 567.
- 9J. A. Pool, E. Lobkovsky, P. J. Chirik, Nature 2004, 427, 527.
- 10
- 10aC. E. Laplaza, C. C. Cummins, Science 1995, 268, 861;
- 10bE. Solari, C. Da Silva, B. Iacono, J. Hesschenbrouck, C. Rizzoli, R. Scopelliti, C. Floriani, Angew. Chem. Int. Ed. 2001, 40, 3907;
10.1002/1521-3773(20011015)40:20<3907::AID-ANIE3907>3.0.CO;2-# CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 4025;
- 10cJ. J. Curley, T. R. Cook, S. Y. Reece, P. Müller, C. C. Cummins, J. Am. Chem. Soc. 2008, 130, 9394;
- 10dT. J. Hebden, R. R. Schrock, M. K. Takase, P. Müller, Chem. Commun. 2012, 48, 1851;
- 10eT. Miyazaki, H. Tanaka, Y. Tanabe, M. Yuki, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, Angew. Chem. Int. Ed. 2014, 53, 11488; Angew. Chem. 2014, 126, 11672.
- 11I. Klopsch, M. Finger, C. Würtele, B. Milde, D. B. Werz, S. Schneider, J. Am. Chem. Soc. 2014, 136, 6881.
- 12M. M. Rodriguez, E. Bill, W. W. Brennessel, P. L. Holland, Science 2011, 334, 780.
- 13Q. Liao, N. Saffon-Merceron, N. Mezailles, ACS Catal. 2015, 5, 6902.
- 14
- 14aJ. Schöffel, A. Y. Rogachev, S. DeBeer George, P. Burger, Angew. Chem. Int. Ed. 2009, 48, 4734; Angew. Chem. 2009, 121, 4828;
- 14bA. K. M. Long, G. H. Timmer, J. S. Pap, J. L. Snyder, R. P. Yu, J. F. Berry, J. Am. Chem. Soc. 2011, 133, 13138;
- 14cR. Thompson, B. L. Tran, S. Ghosh, C.-H. Chen, M. Pink, X. Gao, P. J. Carroll, M.-H. Baik, D. J. Mindiola, Inorg. Chem. 2015, 54, 3068.
- 15
- 15aT. I. Gountchev, T. D. Tilley, J. Am. Chem. Soc. 1997, 119, 12831;
- 15bJ. Gavenonis, T. D. Tilley, Inorg. Chem. 2004, 43, 4353;
- 15cA. Y. Khalimon, R. Simionescu, L. G. Kuzmina, J. A. K. Howard, G. I. Nikonov, Angew. Chem. Int. Ed. 2008, 47, 7701; Angew. Chem. 2008, 120, 7815;
- 15dA. Y. Khalimon, R. Simionescu, G. I. Nikonov, J. Am. Chem. Soc. 2011, 133, 7033;
- 15eL. C. Stevenson, S. Mellino, E. Clot, P. Mountford, J. Am. Chem. Soc. 2015, 137, 10140.
- 16D. L. M. Suess, J. C. Peters, J. Am. Chem. Soc. 2013, 135, 4938.
- 17Protonation or alkylation of molybdenum and rhenium terminal nitrido complexes has been reported (Refs [3a, 11] and [18a]). Protonation of iron nitrido: K. C. MacLeod, S. F. McWilliams, B. Q. Mercado, P. L. Holland, Chem. Sci. 2016, DOI: 10.1039/C6SC00423G.
- 18
- 18aJ. J. Curley, E. L. Sceats, C. C. Cummins, J. Am. Chem. Soc. 2006, 128, 14036;
- 18bJ. J. Curley, A. F. Cozzolino, C. C. Cummins, Dalton Trans. 2011, 40, 2429;
- 18cI. Klopsch, M. Kinauer, M. Finger, C. Würtele, S. Schneider, Angew. Chem. Int. Ed. 2016, 55, 4786; Angew. Chem. 2016, 128, 4864.
- 19Alternative pathways resulting in the formation of the silylamine 6 were envisaged from the reactions between (PPhP2Cy)MoCl3, (PPhP2Cy)Mo0(N2)x or (PPhP2Cy)Mo=N-N(SiMe2-CH2-CH2-SiMe2) with excess of bis(silane) (Ref. [13]). None of them led to formation of the desired product.
- 20CCDC 1455338 (4) and 1455339 (8) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.