Operando Synchrotron X-ray Powder Diffraction and Modulated-Excitation Infrared Spectroscopy Elucidate the CO2 Promotion on a Commercial Methanol Synthesis Catalyst
Dr. Oliver Martin
ETH Zurich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
Search for more papers by this authorDr. Cecilia Mondelli
ETH Zurich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
Search for more papers by this authorDr. Antonio Cervellino
Paul Scherrer Institute, 5232 Villigen, Switzerland
Search for more papers by this authorDr. Davide Ferri
Paul Scherrer Institute, 5232 Villigen, Switzerland
Search for more papers by this authorDr. Daniel Curulla-Ferré
Total Research & Technology Feluy, Zone Industrielle Feluy C, 7181 Seneffe, Belgium
Search for more papers by this authorCorresponding Author
Prof. Javier Pérez-Ramírez
ETH Zurich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
Search for more papers by this authorDr. Oliver Martin
ETH Zurich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
Search for more papers by this authorDr. Cecilia Mondelli
ETH Zurich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
Search for more papers by this authorDr. Antonio Cervellino
Paul Scherrer Institute, 5232 Villigen, Switzerland
Search for more papers by this authorDr. Davide Ferri
Paul Scherrer Institute, 5232 Villigen, Switzerland
Search for more papers by this authorDr. Daniel Curulla-Ferré
Total Research & Technology Feluy, Zone Industrielle Feluy C, 7181 Seneffe, Belgium
Search for more papers by this authorCorresponding Author
Prof. Javier Pérez-Ramírez
ETH Zurich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
Search for more papers by this authorAbstract
Optimal amounts of CO2 are added to syngas to boost the methanol synthesis rate on Cu-ZnO-Al2O3 in the industrial process. The reason for CO2 promotion is not sufficiently understood at the particle level due to the catalyst complexity and the high demands of characterization under true reaction conditions. Herein, we applied operando synchrotron X-ray powder diffraction and modulated-excitation infrared spectroscopy on a commercial catalyst to gain insights into its morphology and surface chemistry. These studies unveiled that Cu and ZnO agglomerate and ZnO particles flatten under CO/H2 and/or CO2/H2. Under the optimal CO/CO2/H2 mixture, sintering is prevented and ZnO crystals adopt an elongated shape due to the minimal presence of the H2O byproduct, enhancing the water-gas shift activity and thus the methanol production. Our results provide a rationale to the CO2 promotion emphasizing the importance of advanced analytical methods to establish structure–performance relations in heterogeneous catalysis.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201603204-sup-0001-misc_information.pdf1.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. Wang, S. Wang, X. Ma, J. Gong, Chem. Soc. Rev. 2011, 40, 3703–3727;
- 1bO. Martin, A. J. Martín, C. Mondelli, S. Mitchell, T. F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferré, J. Pérez-Ramírez, Angew. Chem. Int. Ed. 2016, 55, 6261–6265; Angew. Chem. 2016, 128, 6369–6373.
- 2J. B. Hansen, P. E. H. Nielsen, in Handbook of Heterogeneous Catalysis, Vol. 6, 2nd ed. (Eds.: ), Wiley-VCH, Weinheim, 2008, pp. 2920–2949.
- 3
- 3aK. Klier, V. Chatikavanij, R. G. Herman, G. W. Simmons, J. Catal. 1982, 74, 343–360;
- 3bO. Martin, J. Pérez-Ramírez, Catal. Sci. Technol. 2013, 3, 3343–3352.
- 4
- 4aY. Zhang, Q. Sun, J. Deng, D. Wu, S. Chen, Appl. Catal. A 1997, 158, 105–120;
- 4bA. Y. Rozovskii, G. I. Lin, Kinet. Catal. 1999, 40, 773–794;
- 4cF. Studt, M. Behrens, E. L. Kunkes, N. Thomas, S. Zander, A. Tarasov, J. Schumann, E. Frei, J. B. Varley, F. Abild-Pedersen, J. K. Nørskov, R. Schlögl, ChemCatChem 2015, 7, 1105–1111;
- 4dO. Martin, C. Mondelli, D. Curulla-Ferré, C. Drouilly, R. Hauert, J. Pérez-Ramírez, ACS Catal. 2015, 5, 5607–5616;
- 4eE. L. Kunkes, F. Studt, F. Abild-Pedersen, R. Schlögl, M. Behrens, J. Catal. 2015, 328, 43–48.
- 5
- 5aS. A. French, A. A. Sokol, S. T. Bromley, C. R. A. Catlow, S. C. Rogers, F. King, P. Sherwood, Angew. Chem. Int. Ed. 2001, 40, 4437–4440;
10.1002/1521-3773(20011203)40:23<4437::AID-ANIE4437>3.0.CO;2-L CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 4569–4572;
- 5bS. Polarz, J. Strunk, V. Ischenko, M. W. E. van den Berg, O. Hinrichsen, M. Muhler, M. Driess, Angew. Chem. Int. Ed. 2006, 45, 2965–2969; Angew. Chem. 2006, 118, 3031–3035;
- 5cI. Kasatkin, P. Kurr, B. Kniep, A. Trunschke, R. Schlögl, Angew. Chem. Int. Ed. 2007, 46, 7324–7327; Angew. Chem. 2007, 119, 7465–7468;
- 5dF. Liao, Y. Huang, J. Ge, W. Zheng, K. Tedsree, P. Collier, X. Hong, S. C. Tsang, Angew. Chem. Int. Ed. 2011, 50, 2162–2165; Angew. Chem. 2011, 123, 2210–2213;
- 5eM. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R. W. Fischer, J. K. Nørskov, R. Schlögl, Science 2012, 336, 893–897;
- 5fS. Zander, E. L. Kunkes, M. E. Schuster, J. Schumann, G. Weinberg, D. Teschner, N. Jacobsen, R. Schlögl, M. Behrens, Angew. Chem. Int. Ed. 2013, 52, 6536–6540; Angew. Chem. 2013, 125, 6664–6669;
- 5gS. Kuld, C. Conradsen, P. G. Moses, I. Chorkendorff, J. Sehested, Angew. Chem. Int. Ed. 2014, 53, 5941–5945; Angew. Chem. 2014, 126, 6051–6055.
- 6
- 6aB. M. Weckhuysen in In-situ Characterization of Catalysts, American Scientific, Stevenson Ranch, 2004;
- 6bI. E. Wachs, C. A. Roberts, Chem. Soc. Rev. 2010, 39, 5002–5017;
- 6cG. A. Somorjai, S. K. Beaumont, S. Alayoglu, Angew. Chem. Int. Ed. 2011, 50, 10116–10129; Angew. Chem. 2011, 123, 10298–10311;
- 6dM. A. Bañares, Adv. Mater. 2011, 23, 5293–5301;
- 6eJ. A. Rodriguez, J. C. Hanson, P. J. Chupas in In-situ Characterization of Heterogeneous Catalysts, 2nd ed. (Eds.: ), Wiley-VCH, Weinheim, 2013, pp. 1–22.
10.1002/9781118355923 Google Scholar
- 7
- 7aB. S. Clausen, J. Schiøtz, L. Gråbæk, C. V. Ovesen, K. W. Jacobsen, J. K. Nørskov, H. Topsøe, Top. Catal. 1994, 1, 367–376;
- 7bJ.-D. Grunwaldt, A. M. Molenbroek, N.-Y. Topsøe, H. Topsøe, B. S. Clausen, J. Catal. 2000, 194, 452–460;
- 7cP. L. Hansen, J. B. Wagner, S. Helveg, J. R. Rostrup-Nielsen, B. S. Clausen, H. Topsøe, Science 2002, 295, 2053–2055.
- 8J. A. Rodriguez, J. C. Hanson, D. Stacchiola, S. D. Senanayake, Phys. Chem. Chem. Phys. 2013, 15, 12004–12025.
- 9S. Bailey, G. F. Froment, J. W. Snoeck, K. C. Waugh, Catal. Lett. 1995, 30, 99–111.
- 10
- 10aA. Cervellino, R. Frison, F. Bertolotti, A. Guagliardi, J. Appl. Crystallogr. 2015, 48, 2026–2032;
- 10bG. Cernuto, S. Galli, F. Trudu, G. M. Colonna, N. Masciocchi, A. Cervellino, A. Guagliardi, Angew. Chem. Int. Ed. 2011, 50, 10828–10833; Angew. Chem. 2011, 123, 11020–11025;
- 10cG. Cernuto, N. Masciocchi, A. Cervellino, G. M. Colonna, A. Guagliardi, J. Am. Chem. Soc. 2011, 133, 3114–3119;
- 10dF. Bertolotti, D. N. Dirin, M. Ibáñez, F. Krumeich, A. Cervellino, R. Frison, O. Voznyy, E. H. Sargent, M. V. Kovalenko, A. Guagliardi, N. Masciocchi, Nat. Mater. 2016, DOI: 10.1038/nmat4661.
- 11P. Raybaud, C. Chizallet, C. Mager-Maury, M. Digne, H. Toulhoat, P. Sautet, J. Catal. 2013, 308, 328–340.
- 12A. Karelovic, P. Ruiz, Catal. Sci. Technol. 2015, 5, 869–881.
- 13J. Nakamura, Y. Choi, T. Fujitani, Top. Catal. 2003, 22, 277–285.
- 14Y. Yang, J. Evans, J. A. Rodriguez, M. G. White, P. Liu, Phys. Chem. Chem. Phys. 2010, 12, 9909–9917.
- 15G. N. Lewis, Proc. Natl. Acad. Sci. USA 1925, 22, 179–183.
10.1073/pnas.11.3.179 Google Scholar
- 16L. C. Grabow, M. Mavrikakis, ACS Catal. 2011, 1, 365–384.
- 17
- 17aY.-F. Zhao, Y. Yang, C. Mims, C. H. F. Peden, J. Li, D. Mei, J. Catal. 2011, 281, 199–211;
- 17bY. Yang, D. Mei, C. H. F. Peden, C. T. Campbell, C. A. Mims, ACS Catal. 2015, 5, 7328–7337.
- 18P. R. Willmott, D. Meister, S. J. Leake, M. Lange, A. Bergamaschi, M. Böge, M. Calvi, C. Cancellieri, N. Casati, A. Cervellino, Q. Chen, C. David, U. Flechsig, F. Gozzo, B. Henrich, S. Jäggi-Spielmann, B. Jakob, I. Kalichava, P. Karvinen, J. Krempasky, A. Lüdeke, R. Lüscher, S. Maag, C. Quitmann, M. L. Reinle-Schmitt, T. Schmidt, B. Schmitt, A. Streun, I. Vartiainen, M. Vitins, X. Wang, R. Wullschleger, J. Synchrotron Radiat. 2013, 20, 667–682.
- 19A. Bergamaschi, A. Cervellino, R. Dinapoli, F. Gozzo, B. Henrich, I. Johnson, P. Kraft, A. Mozzanica, B. Schmitt, X. Shi, J. Synchrotron Radiat. 2010, 17, 653–668.
- 20D. Baurecht, U. P. Fringeli, Rev. Sci. Instrum. 2001, 72, 3782–3792.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.