Anisotropic Spheres with Tolman–Kuchowicz Spacetime in the Context of Gravity
Chaitra Chooda Chalavadi
Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, 577451 India
Search for more papers by this authorCorresponding Author
V. Venkatesha
Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, 577451 India
E-mail: [email protected]
Search for more papers by this authorH Aruna Kumara
Department of Mathematics, BMS Institute of Technology and Management, Avalahalli, Yelahanka, Bengaluru, Karnataka, 560064 India
Search for more papers by this authorChaitra Chooda Chalavadi
Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, 577451 India
Search for more papers by this authorCorresponding Author
V. Venkatesha
Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, 577451 India
E-mail: [email protected]
Search for more papers by this authorH Aruna Kumara
Department of Mathematics, BMS Institute of Technology and Management, Avalahalli, Yelahanka, Bengaluru, Karnataka, 560064 India
Search for more papers by this authorAbstract
This study primarily focuses on exploring the nature of anisotropic spheres within the framework of extended symmetric teleparallel gravity. To accomplish this, an anisotropic matter distribution for gravity model with Tolman–Kuchowicz spacetime is considered. Through this analysis, the necessary conditions for matching the interior and exterior geometries of the spheres are discussed and calculated the values of the unknown parameters involved. Furthermore, the physical properties of these spheres are analyzed using observational data from compact objects. The results demonstrate that the interior solutions obtained for anisotropic spheres fulfill all requisite physical criteria, thereby ensuring the stability of our model.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1M. Ruderman, Class. Ann. Rev. Astron. Astrophys. 1972, 10, 427.
- 2L. Herrera, N. O. Santos, Phys. Rep. 1997, 286, 53.
- 3S. K. M. Hossein, F. Rahaman, J. Naskar, M. Kalam, S. Ray, Int. J. Mod. Phys. D 2012, 21, 1250088.
- 4M. Kalam, F. Rahaman, S. Molla, S. M. Hossein, Astrophys. Space Sci. 2014, 349, 865.
- 5B. C. Paul, R. Deb, Astrophys. Space Sci. 2014, 354, 421.
- 6E. Witten, Phys. Rev. D 1984, 30, 272.
- 7K. S. Cheng, Z. G. Dai, T. Lu, Int. J. Mod. Phys. D 1998, 7, 139.
- 8F. Rahaman, K. Chakraborty, P. K. F. Kuhfittig, G. C. Shit, M. Rahman, Eur. Phys. J. C 2014, 74, 3126.
- 9S. Nojiri, S. D. Odintsov, Phys. Lett. B 2005, 631, 1.
- 10P. Rastall, Phys. Rev. D 1972, 6, 12.
10.1103/PhysRevD.6.3357 Google Scholar
- 11T. Harko, F. S. N. Lobo, S. Nojiri, S. D. Odintsov, Phys. Rev. D 2011, 84, 024020.
- 12K. Bamba, S. D. Odintsov, L. Sebastiani, Eur. Phys. J. C 2010, 67, 295.
- 13U. Debnath, Int. J. Mod. Phys. A 2020, 35, 2050203.
- 14M. Sharif, A. Ikram, Eur. Phys. J. C 2016, 76, 640.
10.1140/epjc/s10052-016-4502-1 Google Scholar
- 15M. K. Jasim, D. Deb, S. Ray, Y. K. Gupta, S. R. Chowdhury, Eur. Phys. J. C 2018, 78, 603.
10.1140/epjc/s10052-018-6072-x Google Scholar
- 16S. Biswas, D. Shee, B. K. Guha, S. Ray, Eur. Phys. J. C 2020, 80, 175.
- 17M. Zubair, A. Ditta, E. Gudekli, P. Bhar, H. Azmat, Int. J. Geometric Methods in Mod. Phys. 2021, 18, 2150060.
10.1142/S0219887821500602 Google Scholar
- 18M. Javed, G. Mustafa, M. F. Shamir, New Astron. 2021, 84, 101518.
10.1016/j.newast.2020.101518 Google Scholar
- 19S. Biswas, D. Shee, B. K. Guha, S. Ray, F. Rahaman, Ann. Phys. 2019, 409, 167905.
- 20P. Bhar, K. N. Singh, F. Tello-Ortiz, Eur. Phys. J. C 2019, 79, 922.
- 21A. Majid, M. Sharif, Universe 2020, 6, 124.
- 22M. F. Shamir, T. Naz, Phys. Dark Universe 2020, 27, 100472.
10.1016/j.dark.2020.100472 Google Scholar
- 23P. Bhar, Phys. Dark Universe 2021, 34, 100879.
- 24P. Rej, P. Bhar, M. Govender, Eur. Phys. J. C 2021, 81, 316.
- 25P. Rej, P. Bhar, Int. J. Geometric Methods in Mod. Phys. 2022, 19, 2250104.
10.1142/S0219887822501043 Google Scholar
- 26S. Saklany, B. Pandey, N. Pant, Mod. Phys. Lett. A 2022, 37, 2250182.
10.1142/S0217732322501826 Google Scholar
- 27P. Bhar, Chn. J. Phys. 2023, 83, 61.
10.1016/j.cjph.2023.03.003 Google Scholar
- 28A. Majeed, H. Nazar, G. Abbas, Chn. J. Phys. 2023, 86, 530.
10.1016/j.cjph.2023.10.038 Google Scholar
- 29A. Malik, E. Meer, Z. Asghar, A. Ali, Chn. J. Phys. 2023, 86, 391.
- 30P. Rej, A. Karmakar, Eur. Phys. J. C 2023, 83, 699.
- 31H. Weyl, Preuss. Akad. Wiss. 1918, 1, 465.
- 32J. M. Nester, H. J. Yo, Chn. J. Phys. 1999, 37, 113.
- 33R. H. Lin, X. H. Zhai, Phys. Rev. D 2021, 103, 124001.
- 34S. Mandal, G. Mustafa, Z. Hassan, P. K. Sahoo, Phys. Dark Universe 2022, 35, 100934.
- 35A. Errehymy, A. Ditta, G. Mustafa, S. K. Maurya, A.-H. Abdel-Aty, Eur. Phys. J. C 2022, 137, 1311.
- 36S. Kaur, S. K. Maurya, S. Shukla, B. Dayanandan, New Astronomy 2024, 110, 102230.
10.1016/j.newast.2024.102230 Google Scholar
- 37P. Bhar, A. Malik, A. Almas, Chn. J. Phys. 2024, 88, 839.
10.1016/j.cjph.2024.02.016 Google Scholar
- 38S. K. Maurya, A. Errehymy, G. E. Vilcu, H. I. Alrebdi, K. S. Nisar, Quantum Grav. 2024, 41, 115009.
10.1088/1361-6382/ad3b5f Google Scholar
- 39Y. Xu, G. Li, T. Harko, S.-D. Liang, Eur. Phys. J. C 2019, 79, 708.
- 40Y. Xu, T. Harko, S. Shahidi, S.-D. Liang, Eur. Phys. J. C 2020, 80, 449.
- 41S. Bhattacharjee, P. K. Sahoo, Eur. Phys. J. C 2020, 80, 289.
- 42N. Godani, G. C. Samanta, Int. J. Geom. Meth. Mod. Phys. 2021, 18, 2150134.
10.1142/S0219887821501346 Google Scholar
- 43A. Nájera, A. Fajardo, Phys. Dark Universe 2021, 34, 100889.
- 44A. Nájera, A. Fajardo, JCAP 2022, 03, 020.
10.1088/1475-7516/2022/03/020 Google Scholar
- 45V. Venkatesha, C. C. Chalavadi, N. S. Kavya, P. K. Sahoo, New Astron. 2023, 105, 102090.
10.1016/j.newast.2023.102090 Google Scholar
- 46C. C. Chalavadi, N. S. Kavya, V. Venkatesha, Eur. Phys. J. Plus 2023, 138, 1.
10.1140/epjp/s13360-023-04480-6 Google Scholar
- 47M. Tayde, Z. Hassan, P. K. Sahoo, Phys. Dark Universe 2023, 42, 101288.
10.1016/j.dark.2023.101288 Google Scholar
- 48C. C. Chalavadi, V. Venkatesha, N. S. Kavya, S. V. D. Rashmi, Commun. Theor. Phys. 2024, 76, 025403.
10.1088/1572-9494/ad15fa Google Scholar
- 49A. Sahoo, S. K. Tripathy, B. Mishra, S. Ray, Eur. Phys. J. C 2024, 84, 325.
- 50C. C. Chalavadi, V. Venkatesha, Eur. Phys. Lett 2024, 146, 39001.
- 51M. Z. Gul, M. Sharif, A Arooj, Fortschr. Phys. 2024, 72, 3.
10.1002/prop.202300221 Google Scholar
- 52M. Z. Gul, M. Sharif, A Arooj, Phys. Scr. 2024, 99, 045006.
- 53M. Z. Gul, M. Sharif, A Arooj, Gen. Relativ. Gravit. 2024, 56, 45.
10.1007/s10714-024-03234-8 Google Scholar
- 54K. P. Das, U, Debnath, Eur. Phys. J. C 2024, 84, 513.
- 55Y. Zhao, K. Liu, H. Hou, L. Q. Chen, Mater. Des. 2022, 216, 110555.
- 56Y. Zhang, Z. Huang, H. Wang, J. Li, ACS Appl. Mater. Interfaces 2023, 15, 27.
- 57H. Zhang, H. Liu, H. Kuai, Engin. Failure Analy. 2024, 164, 108705.
10.1016/j.engfailanal.2024.108705 Google Scholar
- 58J. B. Jiménez, L. Heisenberg, T. Koivisto, J. Cosm. Astro. Phys. 2018, 2018, 08.
- 59S. Arora, S. K. J. Pacif, S. Bhattacharjee, Phys. Dark Unv. 2020, 30, 100664.
- 60S. Arora, J. R. L. Santos, P. K. Sahoo, Phys. Dark. Unv. 2021, 31, 100790.
10.1016/j.dark.2021.100790 Google Scholar
- 61A. Nájera, A. Fajardo, J. Cosm. Astro. Phys. 2022, 03, 020.
10.1088/1475-7516/2022/03/020 Google Scholar
- 62M. Sharif, I. Ibrar, Chn. J. Phys. 2024, 89, 1578.
10.1016/j.cjph.2024.04.026 Google Scholar
- 63J. Z. Yang, S. Shahidi, T. Harko, S.-D. Liang, Eur. Phys. J. C 2021, 81, 111.
- 64S. Bhattacharjee, P. K. Sahoo, Eur. Phys. J. C 2020, 80, 289.
- 65R. C. Tolman, Phys. Rev. 1939, 55, 364.
10.1103/PhysRev.55.364 Google Scholar
- 66B. Kuchowicz, Acta Phys. Pol. 1968, 33, 541.
- 67K Lake, Phys. Rev. D 2003, 67, 104015.
- 68Y. B. Zeldovich, I. D. Novikov, Relativistic Astrophysics Vol. 1: Stars and Relativity, University of Chicago Press, Chicago 1971.
- 69S. K. Maurya, F. Tello-Ortiz, Ann. Phys. 2020, 414, 168070.
- 70H. A. Buchdahl, Phys. Rev. 1959, 116, 1027.
- 71D. Barraco, V. H. Hamity, Phys. Rev. D 2002, 65, 124028.
10.1103/PhysRevD.65.124028 Google Scholar
- 72C. G. Böhmer, T. Harko, Class. Quant. Grav. 2006, 23, 6479.
- 73B. V. Ivanov, Phys. Rev. D 2002, 65, 104011.
- 74L. Herrera, Phys. Lett. A 1992, 165, 206.
- 75S. Chandrasekhar, Astrophys. J. 1964, 140, 417.
- 76H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 1975, 38, 51.
- 77K. N. Singh, M. H. Murad, N. Pant, Eur. Phys. J. A 2017, 53, 21.
- 78D. Deb, S. R. Chowdhury, S. Ray, F. Rahaman, B. K. Guha, Ann. Phys. 2017, 387, 239.
- 79Z. Yousaf, M. Sharif, M. Ilyas, M. Z. Bhatti, Eur. Phys. J. C 2017, 77, 691.
- 80M. Sharif, M. Z. Gul, Fortschr. Der Phys. 2023, 71, 2200184.