Quantum Correlation Enhanced with Quantum Coherent Feedback Control in a Cavity-magnon Hybrid System
Yue-Han Lin
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
Search for more papers by this authorYa-Qin Lin
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
Search for more papers by this authorZhi-Ying Lin
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
Search for more papers by this authorCorresponding Author
Rong-Can Yang
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hong-Yu Liu
Department of Physics, College of Science, Yanbian University, Yanji, 133002 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYue-Han Lin
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
Search for more papers by this authorYa-Qin Lin
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
Search for more papers by this authorZhi-Ying Lin
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
Search for more papers by this authorCorresponding Author
Rong-Can Yang
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hong-Yu Liu
Department of Physics, College of Science, Yanbian University, Yanji, 133002 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
A scheme is proposed to enhance quantum correlation, including entanglement and steering, for two magnon modes in a cavity-magnon hybrid system through coherent quantum feedback. The hybrid system consists of a microwave cavity and two YIG spheres, which incorporates a nonlinear flux-driven Josephson parametric amplifier in order for the generation of two photons within the cavity simultaneously. A quantum coherent feedback loop is used for the reduction of effective dissipation. By modulating feedback parameters, optimal bipartite and tripartite entanglement, as well as quantum steering are derived. Importantly, compared with the same setup without coherent feedback, the proposed scheme significantly improves quantum correlation. Furthermore, by optimizing the feedback reflectivity and the ratio of cavity-magnon coupling strength, the enhancement of asymmetric steering can be controlled. Notably, incorporating the feedback loop effectively increase its robustness against thermal noise, thus the scheme offer better prospect for experimental development. This study paves the way for advancements in quantum information processing and quantum entanglement within cavity-magnonics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1M. H. R. Horodecki, P. Horodecki, K. Horodecki, Rev. Mod. Phys. 2009, 81, 865.
- 2B. L. K. Lange, J. Peise, Science 2018, 360, 416.
- 3C. B. D. Salart, A. Baas, Nature 2008, 454, 861.
- 4S. Boughn, Entropy 2022, 24, 4.
10.3390/e24040560 Google Scholar
- 5D. Loss, D. P. DiVincenzo, Phys. Rev. A 1998, 57, 120.
- 6G. Vallone, D. Bacco, D. Dequal, Phys. Rev. Lett. 2015, 115, 040502.
- 7N. Thomas-Peter, B. J. Smith, A. Datta, Phys. Rev. Lett. 2011, 107, 113603.
- 8J. P. Andrew M. Childs, J. Renes, J. Mod. Opt. 2000, 47, 155.
- 9H. C. N. R. Uola, A. C. S. Costa, O. Gühne, Rev. Mod. Phys. 2020, 92, 015001.
- 10S. Liu, D. Han, N. Wang, Y. Xiang, F. Sun, M. Wang, Z. Qin, Q. Gong, X. Su, Q. He, Phys. Rev. Lett. 2022, 128, 200401.
- 11A. Laing, V. Scarani, J. G. Rarity, J. L. O'Brien, Phys. Rev. A 2010, 82, 012304.
- 12C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, H. M. Wiseman, Phys. Rev. A 2012, 85, 010301.
- 13H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, Phys. Rev. Lett. 2013, 111, 127003.
- 14M.-A. Miri, A. Alù, Science 2019, 363, eaar7709.
- 15G.-Q. Zhang, J. Q. You, Phys. Rev. B 2019, 99, 054404.
- 16T.-X. Lu, H. Zhang, Q. Zhang, H. Jing, Phys. Rev. A 2021, 103, 063708.
- 17K. Ullah, M. T. Naseem, Phys. Rev. A 2020, 102, 033721.
- 18B. Wang, Z.-X. Liu, C. Kong, H. Xiong, Y. Wu, Opt. Express 2018, 26, 20248.
- 19A. Rueda, F. Sedlmeir, M. C. Collodo, U. Vogl, Optica 2016, 3, 597.
- 20L. Tian, Z. Li, Phys. Rev. A 2017, 96, 013808.
- 21D. Kong, J. Xu, F. Wang, Phys. Rev. Appl. 2024, 21, 034061.
- 22C. Kong, H. Xiong, Y. Wu, Phys. Rev. Appl. 2019, 12, 034001.
- 23Z.-B. Yang, X.-D. Liu, X.-Y. Yin, Y. Ming, H.-Y. Liu, R.-C. Yang, Phys. Rev. Appl. 2021, 15, 024042.
- 24X.-Y. Yin, Z.-B. Yang, Y.-M. Huang, Q.-M. Wan, R.-C. Yang, H.-Y. Liu, Ann. Phys. 2023, 535, 2200603.
- 25L.-J. Cong, Y.-X. Luo, Z.-G. Zheng, H.-Y. Liu, Y. Ming, R.-C. Yang, Opt. Express 2023, 31, 34021.
- 26J. Li, S.-Y. Zhu, New J. Phys. 2019, 21, 085001.
- 27Z. Zhang, M. O. Scully, G. S. Agarwal, Phys. Rev. Res. 2019, 1, 023021.
- 28J. Li, S.-Y. Zhu, G. S. Agarwal, Phys. Rev. Lett. 2018, 121, 203601.
- 29Q.-M. Wan, Y.-H. Lin, L.-J. Cong, R.-C. Yang, H.-Y. Liu, Results Phys. 2024, 58, 107449.
10.1016/j.rinp.2024.107449 Google Scholar
- 30Y.-X. Luo, L.-J. Cong, Z.-G. Zheng, H.-Y. Liu, Y. Ming, R.-C. Yang, Opt. Express 2023, 31, 34764.
- 31Y.-P. Wang, G.-Q. Zhang, D. Zhang, Phys. Rev. B 2016, 94, 224410.
- 32Y.-P. Wang, G.-Q. Zhang, D. Zhang, Phys. Rev. Lett. 2018, 120, 057202.
- 33A. Krasnok, P. Dhakal, A. Fedorov, P. Frigola, M. Kelly, S. Kutsaev, Appl. Phys. Rev. 2024, 11, 011302.
- 34G. Bacciagaluppi, in The Stanford Encyclopedia of Philosophy, (Ed.: E. N. Zalta), Metaphysics Research Lab, Stanford University, Fall 2020.
- 35S. Lloyd, Phys. Rev. A 2000, 62, 022108.
- 36H. M. Wiseman, G. J. Milburn, Phys. Rev. A 1994, 49, 1350.
- 37R. Hamerly, H. Mabuchi, Phys. Rev. A 2013, 87, 013815.
10.1103/PhysRevA.87.013815 Google Scholar
- 38J. Zhang, Y. xi Liu, R.-B. Wu, K. Jacobs, F. Nori, Phys. Rep. 2017, 679, 1.
- 39Z. Yan, X. Jia, Quantum Sci. Technol. 2017, 2, 024003.
- 40S. Iida, M. Yukawa, H. Yonezawa, N. Yamamoto, A. Furusawa, IEEE Trans. Autom. Control 2012, 57, 2045.
- 41R. B.Liu, W. Yao, L. Sham, Adv. Phys. 2010, 59, 703.
- 42S. R. Inoue, S.-I.-R. Tanaka, R. Namiki, T. Sagawa, Y. Takahashi, Phys. Rev. Lett. 2013, 110, 163602.
- 43A. Vinante, P. Falferi, Phys. Rev. Lett. 2013, 111, 207203.
- 44C. Ahn, A. C. Doherty, A. J. Landahl, Phys. Rev. A 2002, 65, 042301.
- 45V. Sudhir, D. J. Wilson, R. Schilling, H. Schütz, S. A. Fedorov, A. H. Ghadimi, A. Nunnenkamp, T. J. Kippenberg, Phys. Rev. X 2017, 7, 011001.
- 46G.-L. Schmid, C. T. Ngai, M. Ernzer, M. B. Aguilera, T. M. Karg, P. Treutlein, Phys. Rev. X 2022, 12, 011020.
- 47R. Hamerly, H. Mabuchi, Phys. Rev. Lett. 2012, 109, 173602.
- 48L. Qiu, G. Huang, I. Shomroni, J. Pan, P. Seidler, T. J. Kippenberg, PRX Quantum 2022, 3, 020309.
10.1103/PRXQuantum.3.020309 Google Scholar
- 49J. Li, G. Li, S. Zippilli, D. Vitali, T. Zhang, Phys. Rev. A 2017, 95, 043819.
- 50R. Peng, C. Zhao, Z. Yang, J. Yang, L. Zhou, Phys. Rev. A 2023, 107, 013507.
- 51B. T. M. Amazioug, M. Asjad, Nature 2023, 13, 3833.
- 52M. Amazioug, S. Singh, B. Teklu, M. Asjad, Entropy 2023, 25, 10.
10.3390/e25101462 Google Scholar
- 53Q. Zheng, W. Zhong, G. Cheng, A. Chen, Results Phys. 2023, 48, 106422.
10.1016/j.rinp.2023.106422 Google Scholar
- 54S. Qin, X. Xin, S. He, C. Li, J. Opt. Soc. Am. B 2021, 38, 3902.
- 55Y. Zhou, S. Y. Xie, C. J. Zhu, Y. P. Yang, Phys. Rev. B 2022, 106, 224404.
- 56J. Li, S.-Y. Zhu, G. S. Agarwal, Phys. Rev. A 2019, 99, 021801.
- 57T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki, W. D. Oliver, Y. Nakamura, J. S. Tsai, Appl. Phys. Lett. 2008, 93, 042510.
- 58M. M. Nieto, D. R. Truax, Fortschr. Phys./Progr. Phys. 1997, 45, 145.
- 59R. Zwanzig, M. Bixon, Phys. Rev. A 1970, 2, 2005.
- 60C. W. Gardiner, Phys. Rev. Lett. 1986, 56, 1917.
- 61O. Gühne, P. Hyllus, O. Gittsovich, J. Eisert, Phys. Rev. Lett. 2007, 99, 130504.
- 62L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 1990, 64, 821.
- 63A. Meyer-Bäse, F. Ohl, H. Scheich, Neural Comput. 1996, 8, 1731.
- 64J. Halliwell, A. Zoupas, Phys. Rev. D 1995, 52, 7294.
- 65M. B. Plenio, Phys. Rev. Lett. 2005, 95, 090503.
- 66Y. Tabuchi, S. Ishino, T. Ishikawa, Phys. Rev. Lett. 2014, 113, 083603.
- 67N. Kostylev, M. Goryachev, M. E. Tobar, Appl. Phys. Lett. 2016, 108, 062402.
- 68L. Qiu, R. Sahu, W. Hease, G. Arnold, J. M. Fink, Nat. Commun. 2023, 14, 1.
- 69J. Kerckhoff, R. W. Andrews, H. S. Ku, W. F. Kindel, K. Cicak, R. W. Simmonds, K. W. Lehnert, Phys. Rev. X 2013, 3, 021013.
- 70Z.-B. Yang, H. Jin, J.-W. Jin, J.-Y. Liu, H.-Y. Liu, R.-C. Yang, Phys. Rev. Res. 2021, 3, 023126.
- 71H. Tan, Photonics 2023, 10, 10.
10.3390/photonics10101081 Google Scholar
- 72D.-W. Luo, X.-F. Qian, T. Yu, Opt. Lett. 2021, 46, 1073.
- 73H. Y. Yuan, S. Zheng, Z. Ficek, Q. Y. He, M.-H. Yung, Phys. Rev. B 2020, 101, 014419.
- 74M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. Di Giuseppe, D. Vitali, Phys. Rev. Lett. 2017, 119, 123603.
- 75X. Z. Hao, X. Y. Zhang, Y. H. Zhou, Phys. Rev. A 2021, 104, 053515.
- 76C.-s. Yu, H.-s. Song, Phys. Rev. A 2005, 71, 042331.
10.1103/PhysRevA.71.042331 Google Scholar
- 77G. Adesso, F. Illuminati, New J. Phys. 2006, 8, 15.
- 78G. Adesso, F. Illuminati, J. Phys. A: Math. Theor. 2007, 40, 7821.