Facets of Correlated Non-Markovian Channels
Corresponding Author
Vivek Balasaheb Sabale
Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan, 342030 India
E-mail: [email protected]
Search for more papers by this authorNihar Ranjan Dash
Department of Physics, Indian Institute of Technology Jodhpur, Rajasthan, 342030 India
Search for more papers by this authorAtul Kumar
Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan, 342030 India
Search for more papers by this authorSubhashish Banerjee
Department of Physics, Indian Institute of Technology Jodhpur, Rajasthan, 342030 India
Search for more papers by this authorCorresponding Author
Vivek Balasaheb Sabale
Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan, 342030 India
E-mail: [email protected]
Search for more papers by this authorNihar Ranjan Dash
Department of Physics, Indian Institute of Technology Jodhpur, Rajasthan, 342030 India
Search for more papers by this authorAtul Kumar
Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan, 342030 India
Search for more papers by this authorSubhashish Banerjee
Department of Physics, Indian Institute of Technology Jodhpur, Rajasthan, 342030 India
Search for more papers by this authorAbstract
The domain of correlated non-Markovian channels are investigated, exploring the potential memory arising from the correlated action of channels and the inherent memory due to non-Markovian dynamics. The impact of channel correlations is studied using different non-Markovianity indicators and measures. In addition, the dynamical aspects of correlated non-Markovian channels, including entanglement dynamics as well as changes in the volume of accessible states, are explored. The analysis is presented for both unital and non-unital correlated channels. A new correlated channel constructed with modified Ornstein–Uhlenbeck noise (OUN) is also presented and explored. Further, the geometrical effects of the non-Markovianity of the correlated non-Markovian channels are discussed with a study of change in the volume of the accessible states. The link between the correlation factor and error correction success probability is highlighted.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge university press, Cambridge 2010.
10.1017/CBO9780511976667 Google Scholar
- 2A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 1935, 47, 777.
- 3J. S. Bell, Phys. Phys. Fiz. 1964, 1, 195.
10.1103/PhysicsPhysiqueFizika.1.195 Google Scholar
- 4T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, R. Blatt, Science 2016, 351, 1068.
- 5D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Phys. Rev. Lett. 1998, 80, 1121.
- 6A. Peres, Quantum theory: concepts and methods, vol. 72, Springer, Berlin, Germany 1997.
- 7C. H. Bennett, S. J. Wiesner, Phys. Rev. Lett. 1992, 69, 2881.
- 8E. E. Haven, Physica A: Stat. Mech. Appl. 2002, 304, 507.
10.1016/S0378-4371(01)00568-4 Google Scholar
- 9Z. Chen, arXiv preprint quant-ph/0112156 2001.
- 10Y. Wang, E. Mulvihill, Z. Hu, N. Lyu, S. Shivpuje, Y. Liu, M. B. Soley, E. Geva, V. S. Batista, S. Kais, J. Chem. Theory Comput. 2023, 19, 4851.
- 11P. Singh, J. Faujdar, M. Sarkar, A. Kumar, Quantum Inf. Process. 2022, 21, 167.
10.1007/s11128-022-03504-x Google Scholar
- 12J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G. H. Booth, J. Tennyson, Phys. Rep. 2022, 986, 1.
- 13D. Sharma, P. Singh, A. Kumar, Physica A: Stat. Mech. Appl. 2023, 625, 128938.
10.1016/j.physa.2023.128938 Google Scholar
- 14V. B. Sabale, A. Kumar, S. Banerjee, Ann. Phys. 2023, n/a, 2300392.
- 15S. Banerjee, Open quantum systems, Springer, Singapore 2018.
10.1007/978-981-13-3182-4 Google Scholar
- 16Á. Rivas, S. F. Huelga, M. B. Plenio, Rep. Prog. Phys. 2014, 77, 094001.
- 17H.-P. Breuer, J. Phys. B: At. Mol. Opt. Phys. 2012, 45, 154001.
- 18J. Naikoo, S. Dutta, S. Banerjee, Phys. Rev. A 2019, 99, 042128.
- 19S. Milz, K. Modi, PRX Quantum 2021, 2, 030201.
- 20U. Shrikant, R. Srikanth, S. Banerjee, Phys. Rev. A 2018, 98, 032328.
- 21A. Motavallibashi, H. Mohammadi, A. Akhound, JOSA B 2021, 38, 1200.
- 22A. Ghosal, D. Das, S. Banerjee, Phys. Rev. A 2021, 103, 052422.
- 23J. Cao, R. J. Cogdell, D. F. Coker, H.-G. Duan, J. Hauer, U. Kleinekathöfer, T. L. Jansen, T. Mančal, R. D. Miller, J. P. Ogilvie, V. I. Prokhorenko, T. Renger, H.-S. Tan, R. Tempelaar, M. Thorwart, E. Thyrhaug, S. Westenhoff, D. Zigmantas, Sci. Adv. 2020, 6, eaaz4888.
- 24N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, F. Nori, Nat. Phys. 2013, 9, 10.
- 25S. F. Huelga, M. B. Plenio, Contemp. Phys. 2013, 54, 181.
- 26R. Vasile, S. Olivares, M. A. Paris, S. Maniscalco, Phys. Rev. A 2011, 83, 042321.
10.1103/PhysRevA.83.042321 Google Scholar
- 27K. Thapliyal, A. Pathak, S. Banerjee, Quantum Inf. Process. 2017, 16, 1.
10.1007/s11128-017-1567-1 Google Scholar
- 28A. W. Chin, S. F. Huelga, M. B. Plenio, Phys. Rev. Lett. 2012, 109, 233601.
- 29B. Hwang, H.-S. Goan, Phys. Rev. A 2012, 85, 032321.
10.1103/PhysRevA.85.032321 Google Scholar
- 30F. Caruso, V. Giovannetti, C. Lupo, S. Mancini, Rev. Mod. Phys. 2014, 86, 1203.
- 31K. Banaszek, A. Dragan, W. Wasilewski, C. Radzewicz, Phys. Rev. Lett. 2004, 92, 257901.
- 32V. Cimini, I. Gianani, M. F. Sacchi, C. Macchiavello, M. Barbieri, Phys. Rev. A 2020, 102, 052404.
- 33K. Xu, G.-F. Zhang, W.-M. Liu, Phys. Rev. A 2019, 100, 052305.
- 34C. Addis, G. b. u. Karpat, C. Macchiavello, S. Maniscalco, Phys. Rev. A 2016, 94, 032121.
- 35S. Lorenzo, F. Plastina, M. Paternostro, Phys. Rev. A 2013, 88, 020102.
10.1103/PhysRevA.88.020102 Google Scholar
- 36C. Macchiavello, G. M. Palma, Phys. Rev. A 2002, 65, 050301.
- 37T. Yu, J. Eberly, Opt. Commun. 2010, 283, 676.
- 38N. P. Kumar, S. Banerjee, R. Srikanth, V. Jagadish, F. Petruccione, Open Syst. Inf. Dyn 2018, 25, 1850014.
- 39S. Utagi, R. Srikanth, S. Banerjee, Sci. Rep. 2020, 10, 15049.
- 40S. Daffer, K. Wódkiewicz, J. D. Cresser, J. K. McIver, Phys. Rev. A 2004, 70, 010304.
10.1103/PhysRevA.70.010304 Google Scholar
- 41K. G. Paulson, E. Panwar, S. Banerjee, R. Srikanth, Quantum Inf. Process. 2021, 20, 4.
10.1007/s11128-021-03061-9 Google Scholar
- 42B. Bylicka, D. Chruscinski, S. Maniscalco, Sci. Rep. 2014, 4, 5720.
- 43Y. Yeo, A. Skeen, Phys. Rev. A 2003, 67, 064301.
10.1103/PhysRevA.67.064301 Google Scholar
- 44G. Karpat, C. Addis, S. Maniscalco, in Lectures on General Quantum Correlations and their Applications, (Eds.: F. F. Fanchini, D. D. O. Soares Pinto, G. Adesso), Springer International Publishing, Cham 2017, pp. 339–366.
10.1007/978-3-319-53412-1_16 Google Scholar
- 45T. R. Bromley, M. Cianciaruso, G. Adesso, Phys. Rev. Lett. 2015, 114, 210401.
- 46P. W. Shor, Phys. Rev. A 1995, 52, R2493.
- 47A. R. Calderbank, P. W. Shor, Phys. Rev. A 1996, 54, 1098.
- 48A. M. Steane, Phys. Rev. Lett. 1996, 77, 793.
- 49D. Gottesman, arXiv:quant-ph/9705052 [quant-ph], 1977.
- 50D. Gottesman, arXiv:0904.2557 [quant-ph], 2009.
- 51E. Knill, R. Laflamme, arXiv:quant-ph/9608012 [quant-ph], 1996.
- 52F. Gaitan, Quantum Error Correction and Fault Tolerant Quantum Computing, Taylor & Francis, Oxforshire 2008.
10.1201/b15868 Google Scholar
- 53N. R. Dash, S. Dutta, R. Srikanth, S. Banerjee, Phys. Rev. A 2024, 109, 062411.
10.1103/PhysRevA.109.062411 Google Scholar
- 54P. W. Shor, arXiv:quant-ph/9605011 [quant-ph], 1997.
- 55K. Kraus, A. Böhm, J. D. Dollard, W. Wootters, States, Effects, and Operations Fundamental Notions of Quantum Theory: Lectures in Mathematical Physics at the University of Texas at Austin, Springer, Berlin 1983.
10.1007/3-540-12732-1 Google Scholar
- 56F. Caruso, V. Giovannetti, C. Lupo, S. Mancini, Rev. Mod. Phys. 2014, 86, 1203.
- 57Y. Guo, X. Chen, C. Yang, Q. Xie, Phys. Scr. 2023, 98, 115118.
- 58R. Sk, P. K. Panigrahi, Physica A: Stat. Mech. Appl. 2022, 596, 127129.
10.1016/j.physa.2022.127129 Google Scholar
- 59Y. Yeo, A. Skeen, Phys. Rev. A 2003, 67, 064301.
10.1103/PhysRevA.67.064301 Google Scholar
- 60E.-M. Laine, J. Piilo, H.-P. Breuer, Phys. Rev. A 2010, 81, 062115.
- 61A. Rivas, S. F. Huelga, M. B. Plenio, Phys. Rev. Lett. 2010, 105, 050403.
- 62Z. Huang, X.-K. Guo, Phys. Rev. A 2021, 104, 032212.
- 63K.-D. Wu, Z. Hou, G.-Y. Xiang, C.-F. Li, G.-C. Guo, D. Dong, F. Nori, npj Quantum Inf. 2020, 6, 55.
10.1038/s41534-020-0283-3 Google Scholar
- 64M. R. Geller, Z. Zhou, Phys. Rev. A 2013, 88, 012314.
10.1103/PhysRevA.88.012314 Google Scholar
- 65R. Puthumpally-Joseph, E. Mangaud, V. Chevet, M. Desouter-Lecomte, D. Sugny, O. Atabek, Phys. Rev. A 2018, 97, 033411.
- 66P. E. Mendonça, M. A. Marchiolli, D. Galetti, Ann. Phys. 2014, 351, 79.
- 67M. D. Lang, C. M. Caves, Phys. Rev. Lett. 2010, 105, 150501.
- 68A. Shabani, Phys. Rev. A 2008, 77, 022323.
- 69G. Chiribella, M. Dall'Arno, G. M. D'Ariano, C. Macchiavello, P. Perinotti, Phys. Rev. A 2011, 83, 052305.
10.1103/PhysRevA.83.052305 Google Scholar
- 70J. P. Clemens, S. Siddiqui, J. Gea-Banacloche, Phys. Rev. A 2004, 69, 062313.
- 71J. G. D. Forney, Concatenated codes, MIT Press, Cambridge, MA 1966.
- 72D. A. Lidar, D. Bacon, K. B. Whaley, Phys. Rev. Lett. 1999, 82, 4556.
- 73C. Cafaro, S. L'Innocente, C. Lupo, S. Mancini, Open Syst. Inf. Dyn. 2011, 18, 1.
- 74C. Cafaro, S. Mancini, Int. J. Quant. Inf. 2011, 09, 309.
- 75J. Fern, Phys. Rev. A 2008, 77, 010301.
10.1103/PhysRevA.77.010301 Google Scholar
- 76E. Knill, R. Laflamme, A. Ashikhmin, H. Barnum, L. Viola, W. H. Zurek, arXiv:quant-ph/0207170 [quant-ph], 2002.
- 77E. Andersson, J. D. Cresser, M. J. Hall, J. Mod. Opt. 2007, 54, 1695.