Weak Force Sensing Based on Optical Parametric Amplification in a Cavity Optomechanical System Coupled in Series with Two Oscillators
Zheng Liu
Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorYu-qiang Liu
Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorYi-jia Yang
Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Chang-shui Yu
Dalian University of Technology, Dalian, 116024 China
E-mail: [email protected]
Search for more papers by this authorZheng Liu
Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorYu-qiang Liu
Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorYi-jia Yang
Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Chang-shui Yu
Dalian University of Technology, Dalian, 116024 China
E-mail: [email protected]
Search for more papers by this authorAbstract
In the realm weak force sensing, an important issue is to suppress fundamental noise (quantum noise and thermal noise), as they limit the accuracy of force measurement. In this study, a weak force sensing scheme that combines a degenerate optical parametric amplifier (OPA) and an auxiliary mechanical oscillator into a cavity optomechanical system to reduce quantum noise is investigated. It is demonstrated that the noise reduction of two coupled oscillators depends on their norm mode splitting. and provide a classic analogy and quantum perspective for further clarification. Besides, the noise reduction mechanism of OPA is to reduce the fluctuation of photon number and enhance the squeezing of the cavity field. A specific design is proposed that aimed at enhancing the joint effect of both, beyond what can be achieved using OPA alone or two series coupled oscillators. This scheme provides a new perspective for deeper understanding of cavity field squeezing and auxiliary oscillator in force sensing.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1C. L. Degen, F. Reinhard, P. Cappellaro, Rev. Mod. Phys. 2017, 89, 035002.
- 2A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, R. J. Schoelkopf, Rev. Mod. Phys. 2010, 82, 1155.
- 3B. Ohayon, G. Janka, I. Cortinovis, Z. Burkley, L. d. S. Borges, E. Depero, A. Golovizin, X. Ni, Z. Salman, A. Suter, C. Vigo, T. Prokscha, P. Crivelli, Phys. Rev. Lett. 2022, 128, 011802.
- 4N. Lupu-Gladstein, Y. B. Yilmaz, D. R. M. Arvidsson-Shukur, A. Brodutch, A. O. T. Pang, A. M. Steinberg, N. Y. Halpern, Phys. Rev. Lett. 2022, 128, 220504.
- 5X. Long, W.-T. He, N.-N. Zhang, K. Tang, Z. Lin, H. Liu, X. Nie, G. Feng, J. Li, T. Xin, Q. Ai, D. Lu, Phys. Rev. Lett. 2022, 129, 070502.
- 6Q. Shen, J.-Y. Guan, J.-G. Ren, T. Zeng, L. Hou, M. Li, Y. Cao, J.-J. Han, M.-Z. Lian, Y.-W. Chen, X.-X. Peng, S.-M. Wang, D.-Y. Zhu, X.-P. Shi, Z.-G. Wang, Y. Li, W.-Y. Liu, G.-S. Pan, Y. Wang, Z.-H. Li, J.-C. Wu, Y.-Y. Zhang, F.-X. Chen, C.-Y. Lu, S.-K. Liao, J. Yin, J.-J. Jia, C.-Z. Peng, H.-F. Jiang, Q. Zhang, et al., Nature 2022, 610, 1.
10.1038/s41586-022-05228-5 Google Scholar
- 7F. Meylahn, B. Willke, H. Vahlbruch, Phys. Rev. Lett. 2022, 129, 121103.
- 8P. Kumar, T. Biswas, K. Feliz, R. Kanamoto, M.-S. Chang, A. K. Jha, M. Bhattacharya, Phys. Rev. Lett. 2021, 127, 113601.
- 9A. Pontin, M. Bonaldi, A. Borrielli, F. S. Cataliotti, F. Marino, G. A. Prodi, E. Serra, F. Marin, Phys. Rev. A 2014, 89, 023848.
- 10F. Guzmán Cervantes, L. Kumanchik, J. Pratt, J. M. Taylor, Appl. Phys. Lett 2014, 104, 221111.
- 11W.-Z. Zhang, L.-B. Chen, J. Cheng, Y.-F. Jiang, Phys. Rev. A 2019, 99, 063811.
- 12M. Erdil, Y. Ozer, S. Kocaman, IEEE J. Select. Topics Quantum Electron 2019, 25, 1.
10.1109/JSTQE.2018.2880592 Google Scholar
- 13D. Murzin, D. J. Mapps, K. Levada, V. Belyaev, A. Omelyanchik, L. Panina, V. Rodionova, Sensors 2020, 20, 6.
- 14E. Gil-Santos, J. Ruz Jose, O. Malvar, I. Favero, A. Lemaitre, M. Kosaka Priscila, S. Garcia-Lopez, M. Calleja, J. Tamayo, Nat. Nanotechnol. 2020, 15.
- 15B.-B. Li, L. Ou, Y. Lei, Y.-C. Liu, Nanophotonics 2021, 10, 2799.
- 16V. Peano, H. G. L. Schwefel, C. Marquardt, F. Marquardt, Phys. Rev. Lett. 2015, 115, 243603.
- 17J. Aasi, J. Abadie, B. Abbott, R. Abbott, T. Abbott, M. Abernathy, C. Adams, T. Adams, P. Addesso, R. Adhikari, C. Affeldt, O. D. Aguiar, P. Ajith, B. Allen, B. Amador Ceron, D. Amariutei, S. B. Anderson, W. G. Anderson, K. Arai, M. C. Araya, C. Arceneaux, S. Ast, S. M. Aston, D. Atkinson, P. Aufmuth, C. Aulbert, L. Austin, B. E. Aylott, S. Babak, P. T. Baker, et al., Nature Photonics 2013, 7, 613.
- 18A. Motazedifard, F. Bemani, M. H. Naderi, R. Roknizadeh, D. Vitali, New J. Phys 2016, 18, 073040.
- 19B. D. Hauer, A. Metelmann, J. P. Davis, Phys. Rev. A 2018, 98, 043804.
- 20S. Huang, A. Chen, Phys. Rev. A 2020, 101, 023841.
- 21S. Huang, A. Chen, Phys. Rev. A 2020, 102, 023503.
- 22Z. Li, X. You, Y. Li, Y.-C. Liu, K. Peng, Phys. Rev. A 2018, 97, 033806.
- 23G. S. Agarwal, S. Huang, Phys. Rev. A 2016, 93, 043844.
- 24C.-S. Hu, L.-T. Shen, Z.-B. Yang, H. Wu, Y. Li, S.-B. Zheng, Phys. Rev. A 2019, 100, 043824.
- 25S. Huang, A. Chen, Phys. Rev. A 2018, 98, 063818.
- 26Q. Liao, L. Zhou, X. Wang, Y. Liu, Opt. Express 2022, 30, 38776.
- 27S. Huang, G. S. Agarwal, Phys. Rev. A 2017, 95, 023844.
- 28C. K. Law, Phys. Rev. A 1995, 51, 2537.
- 29Z.-Y. Fan, R.-C. Shen, Y.-P. Wang, J. Li, J. Q. You, Phys. Rev. A 2022, 105, 033507.
- 30S. Huang, A. Chen, Phys. Rev. A 2018, 98, 063818.
- 31T. Kippenberg, K. Vahala, Opt. Express 2007, 15, 17172.
- 32E. X. DeJesus, C. Kaufman, Phys. Rev. A 1987, 35, 5288.
- 33H. Allahverdi, A. Motazedifard, A. Dalafi, D. Vitali, M. H. Naderi, Phys. Rev. A 2022, 106, 023107.
- 34A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, T. J. Kippenberg, New J. Phys. 2008, 10, 095015.
- 35M. H. Wimmer, D. Steinmeyer, K. Hammerer, M. Heurs, Phys. Rev. A 2014, 89, 053836.
- 36X. Xu, J. M. Taylor, Phys. Rev. A 2014, 90, 043848.
- 37W.-Z. Zhang, Y. Han, B. Xiong, L. Zhou, New J. Phys 2017, 19, 083022.
- 38Z. Shen, Y.-L. Zhang, Y. Chen, F.-W. Sun, X.-B. Zou, G.-C. Guo, C.-L. Zou, C.-H. Dong, Nature communications 2018, 9, 1.
- 39A. Castellanos-Gomez, H. B. Meerwaldt, W. J. Venstra, H. S. J. van der Zant, G. A. Steele, Phys. Rev. B 2012, 86, 041402.
- 40M. Cirio, K. Debnath, N. Lambert, F. Nori, Phys. Rev. Lett. 2017, 119, 053601.
- 41M. J. Seitner, M. Abdi, A. Ridolfo, M. J. Hartmann, E. M. Weig, Phys. Rev. Lett. 2017, 118, 254301.
- 42P. Huang, L. Zhang, J. Zhou, T. Tian, P. Yin, C. Duan, J. Du, Phys. Rev. Lett. 2016, 117, 017701.
- 43A. Pontin, M. Bonaldi, A. Borrielli, L. Marconi, F. Marino, G. Pandraud, G. A. Prodi, P. M. Sarro, E. Serra, F. Marin, Phys. Rev. Lett. 2016, 116, 103601.
- 44N. Spethmann, J. Kohler, S. Schreppler, L. Buchmann, D. M. Stamper-Kurn, Nature Physics 2016, 12, 27.
- 45M. O. Scully, M. S. Zubairy, Quantum Optics 1999.
- 46R. W. Boyd, Nonlinear optics, Academic Press, 2020.
- 47E. Gil-Santos, D. Ramos, A. Jana, M. Calleja, A. Raman, J. Tamayo, Nano Lett. 2009, 9, 4122.
- 48G. I. Harris, D. L. McAuslan, T. M. Stace, A. C. Doherty, W. P. Bowen, Phys. Rev. Lett. 2013, 111, 103603.
- 49B. Guha, P. E. Allain, A. Lemaître, G. Leo, I. Favero, Phys. Rev. Appl. 2020, 14, 024079.
- 50C. B. Møller, R. A. Thomas, G. Vasilakis, E. Zeuthen, Y. Tsaturyan, M. Balabas, K. Jensen, A. Schliesser, K. Hammerer, E. S. Polzik, Nature 2017, 547, 191.
- 51Y. Takeuchi, Y. Matsuzaki, K. Miyanishi, T. Sugiyama, W. J. Munro, Phys. Rev. A 2019, 99, 022325.
- 52F. Momeni, M. H. Naderi, Laser Physics 2018, 28, 055201.
10.1088/1555-6611/aaac70 Google Scholar