Advancements in the Use of Artificial Saturable Absorbers for Modelocking of 2 µm Ultrafast Fiber Lasers
Akshay Raj R
Department of Applied Physics, Defence Institute of Advanced Technology, Pune, Maharashtra, 411025 India
Search for more papers by this authorSaikat Saha
Department of Physics, National Institute of Technology, Agartala, Tripura, 799046 India
Search for more papers by this authorCorresponding Author
Shyamal Mondal
Department of Applied Physics, Defence Institute of Advanced Technology, Pune, Maharashtra, 411025 India
E-mail: [email protected]
Search for more papers by this authorAkshay Raj R
Department of Applied Physics, Defence Institute of Advanced Technology, Pune, Maharashtra, 411025 India
Search for more papers by this authorSaikat Saha
Department of Physics, National Institute of Technology, Agartala, Tripura, 799046 India
Search for more papers by this authorCorresponding Author
Shyamal Mondal
Department of Applied Physics, Defence Institute of Advanced Technology, Pune, Maharashtra, 411025 India
E-mail: [email protected]
Search for more papers by this authorAbstract
Over the past decade, the research on modelocked 2 fiber lasers has increased rapidly. Conventionally, modelocking is achieved with the existing quantum well structures as well as 2D materials classified as Real Saturable Absorbers. As time progressed and keeping in mind the versatility, stability and robustness, demonstration of 2 fiber lasers that are modelocked by Artificial Saturable Absorbers (ASA) gained importance. This class of Saturable Absorbers exhibits interesting properties, which can make them the best candidate to replace real material-based Saturable Absorbers. The progress of ASA based modelocking schemes in the 2 regime is explored and discussed in detail, along with its underlying physics, citing the various uses and the increasing market for ultrafast fiber lasers. Toward the end of this review, a comparison is drawn between different ASAs based modelocking schemes to get the most favorable conditions for desired output parameters as per one's needs. These fiber lasers with an all-fiber ASA foundation have potential uses in the fields of medical, LIDAR, mid-IR generation, environmental sensing, industrial, and defence.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1A. Sincore, J. D. Bradford, J. Cook, L. Shah, M. C. Richardson, IEEE J. Sel. Top. Quantum Electron. 2017, 24, 1.
10.1109/JSTQE.2017.2775964 Google Scholar
- 2S. D. Jackson, Nat. Photonics 2012, 6, 423.
- 3L. Shah, C. Gaida, M. Gebhardt, A. Sincore, J. D. Bradford, N. Gehlich, I. Mingareev, M. Richardson, in Laser Technology for Defense and Security X, vol. 9081, SPIE, Bellingham, WA 2014, pp. 85–90.
- 4M. Nakazawa, Front. Optoelectron. China 2010, 3, 38.
10.1007/s12200-009-0085-x Google Scholar
- 5L. A. Hall, D. A. Gonzalez, N. M. Fried, J. Biomed. Opt. 2019, 24, 038001.
- 6M. Corrales, O. Traxer, World J. Urol. 2021, 39, 3945.
- 7V. Andreeva, A. Vinarov, I. Yaroslavsky, A. Kovalenko, A. Vybornov, L. Rapoport, D. Enikeev, N. Sorokin, A. Dymov, D. Tsarichenko, P. Glybochko, N. Fried, O. Traxer, G. Altshuler, V. Gapontsev, World J. Urol. 2020, 38, 497.
- 8P. Kronenberg, O. Traxer, Transl. Androl. Urol. 2019, 8, S398.
- 9K. Yin, B. Zhang, G. Xue, L. Li, J. Hou, Opt. Express 2014, 22, 19947.
- 10A. Hemming, N. Simakov, M. Oermann, A. Carter, J. Haub, in 2016 Conference on Lasers and Electro-Optics (CLEO), IEEE, Piscataway, NJ 2016, pp. 1–2.
- 11H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1173.
- 12U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. A. Der Au, IEEE J. Sel. Top. Quantum Electron. 1996, 2, 435.
- 13S. M. Kobtsev, Opt. Fiber Technol. 2022, 68, 102764.
- 14E. Thoen, E. Koontz, D. Jones, F. Kartner, E. Ippen, L. Kolodziejski, IEEE Photonics Technol. Lett. 2000, 12, 149.
- 15L. Yun, Y. Qiu, C. Yang, J. Xing, K. Yu, X. Xu, W. Wei, Photonics Res. 2018, 6, 1028.
- 16S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, J. Lightwave Technol. 2004, 22, 51.
- 17K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
- 18Y. Meng, C. Zhu, Y. Li, X. Yuan, F. Xiu, Y. Shi, Y. Xu, F. Wang, Opt. Lett. 2018, 43, 1503.
- 19Z. Chen, X. Sui, Z. Li, Y. Li, X. Liu, Y. Zhang, Nanoscale Horiz. 2023, 8, 1686.
- 20J. Mohanraj, V. Velmurugan, S. Sivabalan, Opt. Mater. 2016, 60, 601.
- 21X. Liu, Q. Gao, Y. Zheng, D. Mao, J. Zhao, Nanophotonics 2020, 9, 2215.
- 22J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. M. Abramski, Appl. Phys. Lett. 2015, 107, 051108.
- 23K. Y. Lau, X. Liu, J. Qiu, Laser Photonics Rev. 2022, 16, 2100709.
- 24Y. Sun, Y. Meng, H. Jiang, S. Qin, Y. Yang, F. Xiu, Y. Shi, S. Zhu, F. Wang, Opt. Lett. 2019, 44, 582.
- 25S. Mondal, R. Ganguly, K. Mondal, Ann. Phys. 2021, 533, 2000564.
- 26S. Mukhopadhyay, S. Mondal, S. P. Singh, A. Date, K. Hussain, P. K. Datta, Opt. Express 2013, 21, 454.
- 27S. Mondal, S. Mukherjee, S. P. Singh, S. C. Rand, S. Bhattacharya, A. C. Das, P. K. Datta, Opt. Express 2016, 24, 15274.
- 28S. Mondal, S. P. Singh, S. Mukhopadhyay, A. Date, K. Hussain, S. Mukherjee, P. K. Datta, Pramana 2014, 82, 313.
- 29S. Mukhopadhyay, Indian Journal of Science and Technology 2017.
- 30N. Doran, D. Wood, Opt. Lett. 1988, 13, 56.
- 31M. N. Islam, E. Sunderman, R. H. Stolen, W. Pleibel, J. R. Simpson, Opt. Lett. 1989, 14, 811.
- 32P. Andrekson, N. Olsson, J. Simpson, D. Digiovanni, P. Morton, T. Tanbun-Ek, R. Logan, K. Wecht, in Optical Fiber Communication Conference, Optica Publishing Group, Washington, DC 1992, p. PD8.
- 33K. Blow, N. Doran, B. K. Nayar, B. Nelson, Opt. Lett. 1990, 15, 248.
- 34M. E. Fermann, F. Haberl, M. Hofer, H. Hochreiter, Opt. Lett. 1990, 15, 752.
- 35J. Zhao, J. Zhou, Y. Jiang, L. Li, D. Shen, A. Komarov, L. Su, D. Tang, M. Klimczak, L. Zhao, J. Lightwave Technol. 2020, 38, 6069.
- 36V. Matsas, D. Richardson, T. Newson, D. Payne, Opt. Lett. 1993, 18, 358.
- 37E. Nazemosadat, A. Mafi, JOSA B 2013, 30, 1357.
- 38M. Wang, Y. Huang, L. Yu, Z. Song, D. Liang, S. Ruan, IEEE Photon. J. 2018, 10, 1.
- 39B. Ibarra-Escamilla, M. Durán-Sánchez, B. Posada-Ramírez, H. Santiago-Hernández, R. I. Álvarez-Tamayo, D. S. de la Llave, M. Bello-Jiménez, E. A. Kuzin, IEEE Photon. J. 2018, 10, 1.
10.1109/JPHOT.2018.2870572 Google Scholar
- 40W. Chang, A. Ankiewicz, J. Soto-Crespo, N. Akhmediev, Phys. Rev. A 2008, 78, 023830.
- 41M. Michalska, J. Swiderski, Opt. Laser Technol. 2019, 118, 121.
- 42S. Liu, Z. Zhang, J. Shen, K. Yu, IEEE Photon. J. 2019, 11, 1.
- 43H. Ahmad, S. N. Aidit, S. I. Ooi, Z. C. Tiu, Quantum Electron. 2019, 49, 111.
- 44H. Ahmad, M. Ahmed, M. Samion, J. Mod. Opt. 2020, 67, 146.
- 45M. Michalska, Opt. Laser Technol. 2021, 138, 106923.
- 46Y. Guo, F. Yan, T. Feng, Q. Qin, Z. Bai, T. Li, W. Han, H. Zhou, Y. Suo, Opt. Laser Technol. 2022, 145, 107470.
- 47M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, E. M. Dianov, IEEE Photonics Technol. Lett. 2012, 24, 1254.
- 48W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, S. Tan, Laser Phys. Lett. 2013, 10, 115102.
- 49C. W. Rudy, K. E. Urbanek, M. J. Digonnet, R. L. Byer, J. Lightwave Technol. 2013, 31, 1809.
- 50S. Liu, F.-P. Yan, L.-N. Zhang, W.-G. Han, Z.-Y. Bai, H. Zhou, J. Opt. 2015, 18, 015508.
10.1088/2040-8978/18/1/015508 Google Scholar
- 51Y. Xu, Y.-l. Song, G.-g. Du, P.-g. Yan, C.-y. Guo, G.-l. Zheng, S.-c. Ruan, IEEE Photon. J. 2015, 7, 1.
- 52M. Michalska, J. Swiderski, IEEE Photon. J. 2019, 11, 1.
- 53M. Ahmed, S. Sadeq, N. M. Yusoff, N. Z. Abidin, M. Alresheedi, A. Abas, Z. Talib, M. Mahdi, Infrared Phys. Technol. 2022, 123, 104132.
- 54X. Li, T. Wang, W. Ma, L. Du, H. Ren, L. Xiao, IEEE Photon. J. 2022, 14, 1.
- 55S. Liu, F. Yan, Y. Li, L. Zhang, Z. Bai, H. Zhou, Y. Hou, Photonics Res. 2016, 4, 318.
- 56Q. Jia, T. Wang, W. Ma, P. Liu, P. Zhang, B. Bo, Y. Zhang, Opt. Eng. 2016, 55, 106121.
10.1117/1.OE.55.10.106121 Google Scholar
- 57S. D. Emami, M. M. Dashtabi, H. J. Lee, A. S. Arabanian, H. A. A. Rashid, Sci. Rep. 2017, 7, 1.
- 58C. Li, C. Kong, K. K. Wong, IEEE Photon. J. 2019, 11, 1.
- 59S. Mahmoodi, C. Bacher, A. Heidt, C. Lätt, D. Abdollahpour, V. Romano, T. Feurer, M. Ryser, Opt. Commun. 2021, 486, 126747.
- 60Q. Qin, F. Yan, Y. Liu, L. Zhang, Y. Guo, W. Han, Z. Bai, T. Feng, H. Zhou, Opt. Laser Technol. 2021, 134, 106638.
- 61A. Camarillo-Avilés, R. López-Estopier, O. Pottiez, M. Durán-Sánchez, B. Ibarra-Escamilla, M. Bello-Jiménez, Results Opt. 2021, 2, 100040.
10.1016/j.rio.2020.100040 Google Scholar
- 62R. López-Estopier, A. Camarillo-Avilés, M. Bello-Jiménez, O. Pottiez, M. Durán-Sánchez, B. Ibarra-Escamilla, E. Rivera-Pérez, M. V. Andrés, Results Opt. 2021, 5, 100115.
10.1016/j.rio.2021.100115 Google Scholar
- 63Q. Qin, F. Yan, Y. Liu, Y. Guo, L. Zhang, B. Guan, T. Li, Y. Suo, H. Zhou, T. Feng, J. Lightwave Technol. 2021, 39, 4517.
- 64H. Li, Z. Wang, C. Li, Y. Tian, Z. Xiao, J. Zhang, S. Xu, Opt. Laser Technol. 2019, 113, 317.
- 65D. C. Kirsch, A. Bednyakova, P. Varak, P. Honzatko, B. Cadier, T. Robin, A. Fotiadi, P. Peterka, M. Chernysheva, Commun. Phys. 2022, 5, 1.
10.1038/s42005-022-00989-x Google Scholar
- 66C. Xu, T. Huang, Z. Wu, L. Han, J. Zhang, D. Wang, Appl. Opt. 2021, 60, 6843.
- 67J. Zhang, D. Wu, H. Zhang, R. Zhao, R. Wang, S. Dai, Opt. Fiber Technol. 2020, 58, 102253.
- 68N. J. Doran, D. P. Wood, Opt. Lett. 1988, 13, 56.
- 69S. E. Miller, Bell Syst. Tech. J. 1954, 33, 661.
- 70R. B. Dyott, V. A. Handerek, J. Bello, in C. A. Villarruel, editor, Fiber Optic Couplers, Connectors, and Splice Technology, vol. 0479, International Society for Optics and Photonics, SPIE, Bellingham, WA 1984, pp. 23–29.
10.1117/12.942763 Google Scholar
- 71G. P. Agrawal, in Nonlinear Science at the Dawn of the 21st Century, Springer, Berlin, Heidelberg 2000, pp. 195–211.
10.1007/3-540-46629-0_9 Google Scholar
- 72J. Zhao, L. Li, L. Zhao, D. Tang, D. Shen, IEEE Photonics Technol. Lett. 2018, 30, 1699.
- 73X. Zhang, H. Hu, W. Li, N. K. Dutta, Appl. Opt. 2016, 55, 7885.
- 74E. Kuzin, J. Andrade-Lucio, B. I. Escamilla, R. Rojas-Laguna, J. Sanchez-Mondragon, Opt. Commun. 1997, 144, 60.
- 75L. Yuhua, L. Caiyun, W. Jian, W. Boyu, G. Yizhi, IEEE Photonics Technol. Lett. 1998, 10, 1250.
- 76H. Li, F. Hu, Y. Tian, P. Wang, J. Zhang, S. Xu, Opt. Express 2019, 27, 14437.
- 77E. Nazemosadat, A. Mafi, in Nonlinear Optics, Optica Publishing Group, Bellingham, WA 2013, p. NW4A.04.
- 78M. Michalska, J. Michalski, P. Grzes, J. Swiderski, Appl. Sci. 2022, 12, 1664.
- 79J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, S. K. Turitsyn, Opt. Express 2014, 22, 7875.
- 80L. Han, T. Wang, B. Chen, W. Ma, Y. Zhao, H. Jiang, Opt. Eng. 2020, 59, 116107.
- 81Z. He, Y. Chen, Z. Deng, Z. Fang, J. Liu, D. Fan, Appl. Phys. Express 2019, 13, 012011.
10.7567/1882-0786/ab6135 Google Scholar
- 82M. Chernysheva, A. Krylov, P. Kryukov, N. Arutyunyan, A. Pozharov, E. Obraztsova, E. Dianov, Opt. Express 2012, 20, B124.
- 83T. Noronen, O. Okhotnikov, R. Gumenyuk, Opt. Express 2016, 24, 14703.
- 84S. Liu, F.-P. Yan, T. Feng, L.-N. Zhang, Z.-Y. Bai, H. Zhou, Y. Hou, N. Zhang, J. Opt. 2017, 19, 045505.
10.1088/2040-8986/aa6267 Google Scholar
- 85M. Chernysheva, A. Bednyakova, M. Al Araimi, R. C. Howe, G. Hu, T. Hasan, A. Gambetta, G. Galzerano, M. Rümmeli, A. Rozhin, Sci. Rep. 2017, 7, 1.
- 86J. Qingsong, W. Tianshu, M. Wanzhuo, W. Zhen, S. Qingchao, B. Baoxue, J. Huilin, IEEE Photon. J. 2017, 9, 1.
10.1109/JPHOT.2017.2690690 Google Scholar
- 87H. Jiang, H. Li, F. Hu, X. Ren, C. Li, S. Xu, IEEE Photonics Technol. Lett. 2020, 32, 503.
- 88M. A. Chernysheva, A. A. Krylov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, E. M. Dianov, IEEE J. Sel. Top. Quantum Electron. 2014, 20, 448.
10.1109/JSTQE.2014.2313606 Google Scholar
- 89G. Liu, S. Ou, Q. Zhang, M. Zhang, X. Li, Q. Bao, Opt. Laser Technol. 2021, 142, 107160.