Non-Classical Correlations between Single Photons and Magnons
Dan-Dan Chen
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
Search for more papers by this authorCorresponding Author
Hong Xie
Department of Mathematics and Physics, Fujian Jiangxia University, Fuzhou, 350108 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhi-Hua Chen
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
Search for more papers by this authorGong-Wei Lin
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
Search for more papers by this authorCorresponding Author
Xiu-Min Lin
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorDan-Dan Chen
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
Search for more papers by this authorCorresponding Author
Hong Xie
Department of Mathematics and Physics, Fujian Jiangxia University, Fuzhou, 350108 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhi-Hua Chen
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
Search for more papers by this authorGong-Wei Lin
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
Search for more papers by this authorCorresponding Author
Xiu-Min Lin
College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117 China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
A scheme is proposed to realize the non-classical correlation between magnons and photons in a cavity optomagnonic system, which supports both photon modes and a magnon mode. Starting with the system being initially prepared in its ground state, two laser pulses successively drive corresponding optical mode. A two-mode squeezing interaction between optical mode 1 and the magnon mode is created by the first pulse, which leads to a non-classical correlation between photons and magnons. To verify this non-classical correlation, the second pulse is utilized to transfer the magnon state to another optical mode, thus the correlated photon–photon pairs are generated out of the cavity. By discussing the violation of Cauchy–Schwarz inequality, based on numerical simulation, it is confirmed that non-classical correlated photon–magnon pairs can be created in the weak coupling regime, which relaxes the requirements of experimental conditions. The result indicates that cavity optomagnonics can be a promising platform for studying magnon-based quantum information processing.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller, Nature 2001, 414, 413.
- 2A. Kuzmich, W. Bowen, A. Boozer, A. Boca, C. Chou, L.-M. Duan, H. Kimble, Nature 2003, 423, 731.
- 3T. Wilk, S. C. Webster, A. Kuhn, G. Rempe, Science 2007, 317, 488.
- 4S. T. Yılmaz, P. Fallahi, A. Imamoğlu, Phys. Rev. Lett. 2010, 105, 033601.
- 5R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, S. Gröblacher, Nature 2016, 530, 313.
- 6S. V. Kusminskiy, in Optomagnonic Structures: Novel Architectures for Simultaneous Control of Light and Spin Waves, World Scientific, Singapore 2021, pp. 299–353.
10.1142/9789811220050_0007 Google Scholar
- 7B. Zare Rameshti, S. Viola Kusminskiy, J. A. Haigh, K. Usami, D. Lachance-Quirion, Y. Nakamura, C.-M. Hu, H. X. Tang, G. E. Bauer, Y. M. Blanter, Phys. Rep. 2022, 979, 1.
- 8O. O. Soykal, M. E. Flatté, Phys. Rev. Lett. 2010, 104, 077202.
- 9H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, S. T. B. Goennenwein, Phys. Rev. Lett. 2013, 111, 127003.
- 10Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, Y. Nakamura, Phys. Rev. Lett. 2014, 113, 083603.
- 11X. Zhang, C.-L. Zou, L. Jiang, H. X. Tang, Phys. Rev. Lett. 2014, 113, 156401.
- 12M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, M. E. Tobar, Phys. Rev. Appl. 2014, 2, 054002.
- 13Y.-P. Wang, G.-Q. Zhang, D. Zhang, T.-F. Li, C.-M. Hu, J. Q. You, Phys. Rev. Lett. 2018, 120, 057202.
- 14J. T. Hou, L. Liu, Phys. Rev. Lett. 2019, 123, 107702.
- 15Y. Li, T. Polakovic, Y.-L. Wang, J. Xu, S. Lendinez, Z. Zhang, J. Ding, T. Khaire, H. Saglam, R. Divan, J. Pearson, W.-K. Kwok, Z. Xiao, V. Novosad, A. Hoffmann, W. Zhang, Phys. Rev. Lett. 2019, 123, 107701.
- 16H. Y. Yuan, P. Yan, S. Zheng, Q. Y. He, K. Xia, M.-H. Yung, Phys. Rev. Lett. 2020, 124, 053602.
- 17X. Zhang, C.-L. Zou, L. Jiang, H. X. Tang, Sci. Adv. 2016, 2, e1501286.
- 18J. Li, S.-Y. Zhu, G. S. Agarwal, Phys. Rev. Lett. 2018, 121, 203601.
- 19Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, Y. Nakamura, Science 2015, 349, 405.
- 20D. Lachance-Quirion, Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, Y. Nakamura, Sci. Adv. 2017, 3, e1603150.
- 21A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, Y. Nakamura, Phys. Rev. Lett. 2016, 116, 223601.
- 22X. Zhang, N. Zhu, C.-L. Zou, H. X. Tang, Phys. Rev. Lett. 2018, 121, 199901.
- 23J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, A. J. Ferguson, Phys. Rev. Lett. 2016, 117, 133602.
- 24A. Osada, A. Gloppe, R. Hisatomi, A. Noguchi, R. Yamazaki, M. Nomura, Y. Nakamura, K. Usami, Phys. Rev. Lett. 2018, 120, 133602.
- 25R. Hisatomi, A. Noguchi, R. Yamazaki, Y. Nakata, A. Gloppe, Y. Nakamura, K. Usami, Phys. Rev. Lett. 2019, 123, 207401.
- 26H. J. Kimble, Nature 2008, 453, 1023.
- 27J. Li, Y.-P. Wang, W.-J. Wu, S.-Y. Zhu, J. You, PRX Quantum 2021, 2, 040344.
- 28R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, Y. Nakamura, Phys. Rev. B 2016, 93, 174427.
- 29T. Liu, X. Zhang, H. X. Tang, M. E. Flatté, Phys. Rev. B 2016, 94, 060405(R).
- 30S. Viola Kusminskiy, H. X. Tang, F. Marquardt, Phys. Rev. A 2016, 94, 033821.
- 31J. Graf, H. Pfeifer, F. Marquardt, S. Viola Kusminskiy, Phys. Rev. B 2018, 98, 241406(R).
- 32J. A. Haigh, N. J. Lambert, S. Sharma, Y. M. Blanter, G. E. W. Bauer, A. J. Ramsay, Phys. Rev. B 2018, 97, 214423.
- 33S. Sharma, Y. M. Blanter, G. E. W. Bauer, Phys. Rev. Lett. 2018, 121, 087205.
- 34S. Sharma, B. Z. Rameshti, Y. M. Blanter, G. E. W. Bauer, Phys. Rev. B 2019, 99, 214423.
- 35W.-J. Wu, Y.-P. Wang, J.-Z. Wu, J. Li, J. Q. You, Phys. Rev. A 2021, 104, 023711.
- 36S. Sharma, V. A. S. V. Bittencourt, A. D. Karenowska, S. V. Kusminskiy, Phys. Rev. B 2021, 103, L100403.
- 37F.-X. Sun, S.-S. Zheng, Y. Xiao, Q. Gong, Q. He, K. Xia, Phys. Rev. Lett. 2021, 127, 087203.
- 38F. Šimić, S. Sharma, Y. M. Blanter, G. E. Bauer, Phys. Rev. B 2020, 101, 100401.
- 39D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, Y. Nakamura, Appl. Phys. Exp. 2019, 12, 070101.
- 40N. Zhu, X. Zhang, X. Han, C.-L. Zou, C. Zhong, C.-H. Wang, L. Jiang, H. X. Tang, Optica 2020, 7, 1291.
- 41J. Graf, S. Sharma, H. Huebl, S. V. Kusminskiy, Phys. Rev. Res. 2021, 3, 013277.
- 42V. A. S. V. Bittencourt, I. Liberal, S. Viola Kusminskiy, Phys. Rev. Lett. 2022, 128, 183603.
- 43V. Bittencourt, I. Liberal, S. V. Kusminskiy, Phys. Rev. B 2022, 105, 014409.
- 44H. Xie, Z.-G. Shi, L.-W. He, X. Chen, C.-G. Liao, X.-M. Lin, Phys. Rev. A 2022, 105, 023701.
- 45S. G. Hofer, W. Wieczorek, M. Aspelmeyer, K. Hammerer, Phys. Rev. A 2011, 84, 052327.
- 46R. Chetrite, K. Mallick, J. Sta. Phys. 2012, 148, 480.
- 47U. Weiss, Quantum Dissipative Systems, 3rd ed., World Scientific, Berlin, Germany 2008.
10.1142/6738 Google Scholar