Nonlinear Topological Photonic Insulator in Synthetic Space
Erjie Wu
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorGuangzhen Li
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorDanying Yu
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorLuojia Wang
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Luqi Yuan
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]
Search for more papers by this authorXianfeng Chen
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Shanghai Research Center for Quantum Sciences, Shanghai, 201315 China
Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan, 250358 China
Search for more papers by this authorErjie Wu
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorGuangzhen Li
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorDanying Yu
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorLuojia Wang
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Luqi Yuan
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]
Search for more papers by this authorXianfeng Chen
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Shanghai Research Center for Quantum Sciences, Shanghai, 201315 China
Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan, 250358 China
Search for more papers by this authorAbstract
As an emerging field, nonlinear topological photonics attracts great attention nowadays, where pioneering works show interesting phenomena including topological edge solitons and nonlinearity-induced coupling of light into topological edge states. In this work, the nonlinear effects in a photonic topological insulator in the synthetic space including the frequency axis of light, in a ring resonant array under dynamic modulations are studied, where the four-wave mixing nonlinear process is included. Such nonlinear process not only induces local interactions, but also creates long-range interactions in the frequency dimension. These results show destruction on topologically protected edge states when the nonlinear effects are increasing. Moreover, it also breaks the symmetry in the synthetic space as well as the band structure, which reflects different propagation behaviors for the different input sources with positive and negative frequency shifts and exhibits short-time robustness in weak nonlinear cases. This work hence explores the role of nonlinear effects in affecting the edge modes in the synthetic space, which may be useful in quantum many-body simulations and find possible applications in information processing.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto, Rev. Mod. Phys. 2019, 91, 015006.
- 2M. Segev, M. A. Bandres, Nanophotonics 2021, 10, 425.
- 3H. Price, Y. Chong, A. Khanikaev, H. Schomerus, L. J. Maczewsky, M. Kremer, M. Heinrich, A. Szameit, O. Zilberberg, Y. Yang, B. Zhang, A. Alù, R. Thomale, I. Carusotto, P. St-Jean, A. Amo, A. Dutt, L. Yuan, S. Fan, X. Yin, C. Peng, T. Ozawa, A. Blanco-Redondo, J. Phys.: Photonics 2022, 4, 032501.
- 4Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljačić, Phys. Rev. Lett. 2008, 100, 013905.
- 5M. Hafezi, M. D. Lukin, J. M. Taylor, New J. Phys. 2013, 15, 063001.
- 6L.-H. Wu, X. Hu, Phys. Rev. Lett. 2015, 114, 223901.
- 7A. B. Khanikaev, G. Shvets, Nat. Photonics 2017, 11, 763.
- 8Y. Yang, Z. Gao, H. Xue, L. Zhang, M. He, Z. Yang, R. Singh, Y. Chong, B. Zhang, H. Chen, Nature 2019, 565, 622.
- 9M. Kim, Z. Jacob, J. Rho, Light: Sci. Appl. 2020, 9, 130.
- 10L. Yuan, Y. Shi, S. Fan, Opt. Lett. 2016, 41, 741.
- 11A. Dutt, Q. Lin, L. Yuan, M. Minkov, M. Xiao, S. Fan, Science 2019, 367, 59.
- 12A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, U. Peschel, Nature 2012, 488, 167.
- 13S. Weidemann, M. Kremer, T. Helbig, T. Hofmann, A. Stegmaier, M. Greiter, R. Thomale, A. Szameit, Science 2020, 368, 311.
- 14X.-W. Luo, X. Zhou, C.-F. Li, J.-S. Xu, G.-C. Guo, Z.-W. Zhou, Nat. Commun. 2015, 6, 7704.
- 15M. Yang, H.-Q. Zhang, Y.-W. Liao, Z.-H. Liu, Z.-W. Zhou, X.-X. Zhou, J.-S. Xu, Y.-J. Han, C.-F. Li, G.-C. Guo, Nat. Commun. 2022, 13, 2040.
- 16L. Yuan, Q. Lin, M. Xiao, S. Fan, Optica 2018, 5, 1396.
- 17E. Lustig, M. Segev, Adv. Opt. Photonics 2021, 13, 426.
- 18D. Smirnova, D. Leykam, Y. Chong, Y. Kivshar, Appl. Phys. Rev. 2020, 7, 021306.
- 19D. Leykam, Y. D. Chong, Phys. Rev. Lett. 2016, 117, 143901.
- 20D. Solnyshkov, O. Bleu, B. Teklu, G. Malpuech, Phys. Rev. Lett. 2017, 118, 023901.
- 21W. Zhang, X. Chen, Y. V. Kartashov, V. V. Konotop, F. Ye, Phys. Rev. Lett. 2019, 123, 254103.
- 22D. A. Smirnova, L. A. Smirnov, D. Leykam, Y. S. Kivshar, Laser Photonics Rev. 2019, 13, 1900223.
- 23S. Mukherjee, M. C. Rechtsman, Science 2020, 368, 856.
- 24Z. Zhang, R. Wang, Y. Zhang, Y. V. Kartashov, F. Li, H. Zhong, H. Guan, K. Gao, F. Li, Y. Zhang, M. Xiao, Nat. Commun. 2020, 11, 1902.
- 25B. Zhang, Z. Chen, R. Deng, F. Huang, Y. Zheng, Acta Opt. Sin. 35, s119001.
10.3788/AOS201535.s119001 Google Scholar
- 26S. Yao, Z. Wang, Phys. Rev. Lett. 2018, 121, 086803.
- 27Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, M. Ueda, Phys. Rev. X 2018, 8, 031079.
- 28D. S. Borgnia, A. J. Kruchkov, R.-J. Slager, Phys. Rev. lett. 2020, 124, 056802.
- 29D. Cheng, B. Peng, M. Xiao, X. Chen, L. Yuan, S. Fan, Phys. Rev. B 2022, 105, 201105.
- 30L. Yuan, A. Dutt, M. Qin, S. Fan, X. Chen, Photonics Res. 2020, 8, B8.
- 31A. K. Tusnin, A. M. Tikan, T. J. Kippenberg, Phys. Rev. A 2020, 102, 023518.
- 32N. Englebert, N. Goldman, M. Erkintalo, N. Mostaan, S.-P. Gorza, F. Leo, J. Fatome, arXiv:2112.10756 2021.
- 33D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, G. Leuchs, J. Opt. 2016, 18, 123002.
- 34B. A. Bell, K. Wang, A. S. Solntsev, D. N. Neshev, A. A. Sukhorukov, B. J. Eggleton, Optica 2017, 4, 1433.
- 35J. G. Titchener, B. Bell, K. Wang, A. S. Solntsev, B. J. Eggleton, A. A. Sukhorukov, APL Photonics 2020, 5, 030805.
- 36K. Wang, B. A. Bell, A. S. Solntsev, D. N. Neshev, B. J. Eggleton, A. A. Sukhorukov, Light: Sci. Appl. 2020, 9, 132.
- 37Q. Shan, D. Yu, G. Li, L. Yuan, X. Chen, Prog. Electromagn. Res. 2020, 169, 33
- 38A. Dutt, L. Yuan, K. Y. Yang, K. Wang, S. Buddhiraju, J. Vučković, S. Fan, Nat. Commun. 2022, 13, 3377.
- 39L. Yuan, A. Dutt, S. Fan, APL Photonics 2021, 6, 071102.
- 40R. W. Boyd, Nonlinear Optics 3rd ed., Elsevier Singapore Pte Ltd, Singapore 2008.
- 41H. Chen, N. Yang, C. Qin, W. Li, B. Wang, T. Han, C. Zhang, W. Liu, K. Wang, H. Long, X. Zhang, P. Lu, Light: Sci. Appl. 2021, 10, 48.
- 42G. Li, L. Wang, R. Ye, S. Liu, Y. Zheng, L. Yuan, X. Chen, Adv. Photonics 2022, 4, 036002.
- 43A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, P. W. Smith, Opt. Lett. 2004, 29, 602.
- 44P. Kabaciński, T. M. Kardaś, Y. Stepanenko, C. Radzewicz, Opt. Express 2019, 27, 11018.
- 45Y. Hu, C. Reimer, A. Shams-Ansari, M. Zhang, M. Loncar, Optica 2020, 7, 1189.
- 46A. Balčytis, T. Ozawa, Y. Ota, S. Iwamoto, J. Maeda, T. Baba, Sci. Adv. 2022, 8, abk0468.
- 47F. Zhang, Y. Feng, X. Chen, L. Ge, W. Wan, Phys. Rev. lett. 2020, 124, 053901.
- 48J. Yang, L. Yuan, T. Qin, F. Zhang, Y. Chen, X. Jiang, X. Chen, S. Fan, W. Wan, Optica 2021, 8, 1448.