Detecting Non-Markovianity via Linear Entropy of Choi State
Xiao Zheng
Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Xueyuan Road No. 37, Beijing, 100191 China
Search for more papers by this authorShao-Qiang Ma
Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Xueyuan Road No. 37, Beijing, 100191 China
Search for more papers by this authorCorresponding Author
Guo-Feng Zhang
Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Xueyuan Road No. 37, Beijing, 100191 China
E-mail: [email protected]Search for more papers by this authorXiao Zheng
Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Xueyuan Road No. 37, Beijing, 100191 China
Search for more papers by this authorShao-Qiang Ma
Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Xueyuan Road No. 37, Beijing, 100191 China
Search for more papers by this authorCorresponding Author
Guo-Feng Zhang
Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Xueyuan Road No. 37, Beijing, 100191 China
E-mail: [email protected]Search for more papers by this authorAbstract
Non-Markovian dynamics detection is one of the most popular subjects in quantum information science. In this paper, a linear-entropy-based non-Markovianity witness scheme is constructed. The positive definiteness of the Choi state will be broken in non-Markovian evolution, which can be witnessed by its linear entropy. Thus, the linear entropy of the Choi state can be used to witness non-Markovian dynamics. The effectiveness of the proposed method is verified using the pure dephasing channel as an example. Finally, it is shown that this method can be extended to the one based on Rényi entropy.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1H. P. Breuer, F. Petruccione, Oxford University Press, Oxford 2002.
- 2R. Alicki, K. Lendi, Lecture Notes in Physics, Springer-Verlag, Berlin Heidelberg 2007.
- 3G. Lindblad, Commun. Math. Phys. 1976, 48, 119.
- 4V. Gorini, A. Kossakowski, E. C. G. Sudarshan, J. Math. Phys. 1976, 17, 821.
- 5S. Luo, Phys. Rev. A. 2006, 73, 022324.
- 6A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 1987, 59, 1.
- 7A. Rivas, S. F. Huelga, M. B. Plenio, Rep. Prog. Phys. 2014, 77, 094001.
- 8H. P. Breuer, E. M. Laine, J. Piilo, B. Vacchini, Rev. Mod. Phys. 2016, 88, 021002.
- 9I. de Vega, D. Alonso, Rev. Mod. Phys. 2017, 89, 015001.
- 10A. Rivas, S. F. Huelga, M. B. Plenio, Phys. Rev. Lett. 2010, 105, 050403.
- 11E. M. Laine, J. Piilo, H. P. Breuer, Phys. Rev. A. 2010, 81, 062115.
- 12A. G. Dijkstra, Y. Tanimura, Phys. Rev. Lett. 2010, 104, 250401.
- 13F. A. Pollock, C. Rodríguez-Rosario, T. Frauenheim, M. Paternostro, K. Modi, Phys. Rev. Lett. 2018, 120, 040405.
- 14S. B. Xue, R. B. Wu, W. M. Zhang, J. Zhang, C. W. Li, T. J. Tarn, Phys. Rev. A. 2012, 86, 052304.
- 15A. D'Arrigo, R. Lo. Franco, G. Benenti, E. Paladino, G. Falci, Ann. Phys. 2014, 350, 211.
- 16B. Bylicka, D. Chruscinski, S. Maniscalco, Sci. Rep. 2014, 4, 5720.
- 17S. F. Huelga, A. Rivas, M. B. Plenio, Phys. Rev. Lett. 2012, 108, 160402.
- 18A. W. Chin, S. F. Huelga, M. B. Plenio, Phys. Rev. Lett. 2012, 109, 233601.
- 19E. M. Laine, H. P. Breuer, J. Piilo, C. F. Li, G. C. Guo, Phys. Rev. Lett. 2012, 108, 210402.
- 20S. Deffner, E. Lutz, Phys. Rev. Lett. 2013, 111, 010402.
- 21Z. Y. Xu, S. Luo, W. L. Yang, C. Liu, S. Zhu, Phys. Rev. A 2014, 89, 012307.
- 22K. Xu, Y. J. Zhang, Y. J. Xia, Z. D. Wang, H. Fan, Phys. Rev. A 2018, 98, 022114.
- 23J. S. Xu, C. F. Li, M. Gong, X. B. Zou, C. H. Shi, G. Chen, G. C. Guo, Phys. Rev. Lett. 2010, 104, 100502.
- 24D. Chruscinski, A. Kossakowski, Phys. Rev. Lett. 2010, 104, 070406.
- 25W. M. Zhang, P. Y. Lo, H. N. Xiong, M. Wei-Yuan Tu, F. Nori, Phys. Rev. Lett. 2012, 109, 170402.
- 26C. Addis, P. Haikka, S. McEndoo, C. Macchiavello, S. Maniscalco, Phys. Rev. A 2013, 87, 052109.
- 27B. Vacchini, J. Phys. B: At. Mol. Opt. Phys. 2012, 45, 154007.
- 28F. F. Fanchini, G. Karpat, L. K. Castelano, D. Z. Rossatto, Phys. Rev. A 2013, 88, 012105.
- 29B. H. Liu, L. Li, Y. F. Huang, C. F. Li, G. C. Guo, E. M. Laine, H. P. Breuer, J. Piilo, Nat. Phys. 2011, 7, 931.
- 30J. S. Tang, C. F. Li, Y. L. Li, X. B. Zou, G. C. Guo, H. P. Breuer, E. M. Laine, J. Piilo, Europhys. Lett. 2012, 97, 10002.
10.1209/0295-5075/97/10002 Google Scholar
- 31F. F. Fanchini, G. Karpat, B. Cakmak, L. K. Castelano, G. H. Aguilar, O. J. Farias, S. P. Walborn, P. H. Souto Ribeiro, M. C. de Oliveira, Phys. Rev. Lett. 2014, 112, 210402.
- 32Z. He, X. Yao, Q. Wang, J. Zou, Phys. Rev. A. 2014, 90, 042101.
- 33A. G. Maity, S. Bhattacharya, A. S. Majumdar, arXiv:1901.02372v1.
- 34H. T. Song, Y. Y. Mao, Phys. Rev. A 2017, 96, 032115.
- 35S. Lorenzo, F. Plastina, M. Paternostro, Phys. Rev. A 2013, 88, 020102(R).
- 36L. Mazzola, C. A. Rodriguez-Rosario, K. Modi, M. Paternostro, Phys. Rev. A 2012, 86, 010102(R).
- 37B. Bellomo, R. Lo Franco, G. Compagno, Phys. Rev. Lett. 2007, 99, 160502.
- 38B. Bylicka, M. Johansson, A. Acin, Phys. Rev. Lett. 2017, 118, 120501.
- 39P. Kumar, S. Banerjee, R. Srikanth, V. Jagadish, F. Petruccione, Open Syst. Inf. Dyn. 2018, 25, 1850014.
- 40N. Pradeep Kumar, S. Banerjee, C. M. Chandrashekar, Sci. Rep. 2018, 8, 8801.
- 41U. Shrikant, R. Srikanth, S. Banerjee, Phys. Rev. A 2018, 98, 032328.
- 42D. W. Leung, J. Math. Phys. 2003, 44, 528.
- 43M. D. Choi, Linear. Algebra. Appl. 1975, 10, 285.
- 44A. Jamiołkowski, Rep. Math. Phys. 1972, 3, 275.
10.1016/0034-4877(72)90011-0 Google Scholar
- 45V. Mukherjee, V. Giovannetti, R. Fazio, S. F. Huelga, T. Calarco, S. Montangero, New. J. Phys. 2015, 17, 063031.
- 46E. Schrödinger, Physikalisch-mathematische Klasse 1930, 14, 296.
- 47Here and .
- 48O. Gühne, G. Tóth, Phys. Rep. 2009, 474, 1.
- 49A. Rényi, in Proc. of the Symp. on Mathematical Statistics and Probability, University of California Press, Berkeley 1961, pp. 547–561.