Stochastic stability of decentralized Kalman filter for nonlinear systems
Corresponding Author
Vinod Kumar Saini
Department of Aerospace Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
Correspondence Vinod Kumar Saini, Department of Aerospace Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 Maharashtra, India.
Email: [email protected]
Search for more papers by this authorArnab Maity
Department of Aerospace Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
Search for more papers by this authorCorresponding Author
Vinod Kumar Saini
Department of Aerospace Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
Correspondence Vinod Kumar Saini, Department of Aerospace Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 Maharashtra, India.
Email: [email protected]
Search for more papers by this authorArnab Maity
Department of Aerospace Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
Search for more papers by this authorSummary
In this paper, stochastic stability of a decentralized Kalman filter (DKF) for nonlinear systems and a bound on the sum of square of predicted estimation error are examined of a single node. A Lyapunov analysis approach is used to show that the predicted estimation error of the nonlinear DKF is stochastically stable and exponentially bounded in mean square, if the system is observable, controllable and the initial estimation error is bounded. Moreover, it is validated by the numerical simulations. The numerical results show that the sum of square of the predicted estimation error is bounded above.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1Rao BSY, Durrant-Whyte HF, Sheen JA. A fully decentralized multi-sensor system for tracking and surveillance. Int J Robot Res. 1993; 12(1): 20-44. doi:10.1177/027836499301200102
- 2Carlson NA. Federated square root filter for decentralized parallel processors. IEEE Trans Aerosp Electron Syst. 1990; 26(3): 517-525. doi:10.1109/7.106130
- 3Olfati-Saber R. Distributed Kalman filter with embedded consensus filters. Proceedings of the 44th IEEE Conference on Decision and Control; December 15, 2005:8179-8184; Seville, Spain.
- 4Yao P, Liu G, Liu Y. Average information-weighted consensus filter for target tracking in distributed sensor networks with naivety issues. Int J Adapt Control Signal Process. 2018; 32(5): 681-699. doi:10.1002/acs.2861
- 5Heydari M, Demetriou MA. Distributed Kalman filters with adaptive strategy for linear time-varying interconnected systems. Int J Adapt Control Signal Process 2016; 30(11): 1568-1582. doi: https://doi.org/10.1002/acs.2654
- 6Mahmoud MS. Distributed estimation based on information-based covariance intersection algorithms. Int J Adap Control Signal Process. 2016; 30(5): 750-778. doi:10.1002/acs.2638
- 7Saini VK, Maity A. Adaptive decentralized Kalman filters with non-common states for nonlinear systems. European Journal of Control. 2021. doi:10.1016/j.ejcon.2021.09.004
- 8Saini V, Paranjape AA, Maity A. Decentralized Information Filter with Noncommon States. Journal of Guidance, Control, and Dynamics. 2019; 42:(9): 2042-2054. doi:10.2514/1.g003862
- 9Mu H, Bailey T, Thompson P, Durrant-Whyte H. Decentralised solutions to the cooperative multi-platform navigation problem. IEEE Trans Aerosp Electron Syst. 2011; 47(2): 1433-1449. doi:10.1109/TAES.2011.5751268
- 10Lv X, Mourad-Chehade F, Snoussi H. Decentralized localization using radio-fingerprints and accelerometer in WSNs. IEEE Trans Aerosp Electron Syst. 2015; 51(1): 242-257. doi:10.1109/TAES.2014.130479
- 11Wang J, Butcher EA. Decentralized estimation of spacecraft relative motion using consensus extended Kalman filter. Proceedings of the Space Flight Mechanics Meeting, SciTech Forum. AIAA; January 8–12, 2018; Kissimmee, FL
- 12Reif K, Gunther S, Yaz E, Unbehauen R. Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans Automat Contr. 1999; 44(4): 714-728. doi:10.1109/9.754809
- 13Kluge S, Reif K, Brokate M. Stochastic stability of the extended Kalman filter with intermittent observations. IEEE Trans Automat Contr. 2010; 55(2): 514-518. doi:10.1109/TAC.2009.2037467
- 14Wang G, Chen J, Sun J. Stochastic stability of extended filtering for non-linear systems with measurement packet losses. IET Control Theory Appl. 2013; 7(17): 2048-2055. doi:10.1049/iet-cta.2013.0327
- 15Li L, Xia Y. Stochastic stability of the unscented Kalman filter with intermittent observations. Automatica. 2012; 48(5): 978-981. doi:10.1016/j.automatica.2012.02.014
- 16Jie S, Guoqing Q, Yinya L, Andong S. Stochastic convergence analysis of cubature Kalman filter with intermittent observations. J Syst Eng Electron. 2018; 29(4): 823-833. doi:10.21629/JSEE.2018.04.17
- 17Kim KH, Jee GI, Park CG, Lee JG. The stability analysis of the adaptive fading extended Kalman filter using the innovation covariance. Int J Control Autom Syst. 2009; 7(1): 49-56. doi:10.1007/s12555-009-0107-x
- 18Olfati-Saber R. Kalman-consensus filter : Optimality, stability, and performance. Proceedings of the 48h IEEE Conference on Decision and Control held jointly with 2009 28th Chinese Control Conference; December 15–18, 2009:7036-7042; Shanghai, China
- 19Chen L, Cui R, Yan W. Stochastic stability of distributed extended Kalman filter with consensus on estimates. Proceedings of the Annual American Control Conference; June 27-29, 2018:1021-1026; Milwaukee, WI
- 20 Wei G, Li W, Ding D, Liu Y. Stability analysis of covariance intersection based Kalman consensus filtering for time-varying systems. IEEE Trans Syst Man Cybern Syst. 2018; 50(11): 1-12. doi:10.1109/TSMC.2018.2855741
- 21Battistelli G, Chisci L. Stability of consensus extended Kalman filter for distributed state estimation. Automatica. 2016; 68: 169-178. doi:10.1016/j.automatica.2016.01.071
- 22Kamgarpour M, Tomlin C. Convergence properties of a decentralized Kalman filter. Proceedings of the 47th IEEE Conference on Decision and Control; December 9-11, 2008:3205-3210; IEEE, Cancun, Mexico.
- 23Li W, Wei G, Han F, Liu Y. Weighted average consensus-based unscented Kalman filtering. IEEE Trans Cybern. 2016; 46(2): 558-567. doi:10.1109/TCYB.2015.2409373
- 24Li W, Wei G, Ding D, Liu Y, Alsaadi FE. A new look at boundedness of error covariance of Kalman filtering. IEEE Trans Syst Man Cybern Syst. 2018; 48(2): 309-314. doi:10.1109/TSMC.2016.2598845
- 25Li W, Jia Y, Du J. Distributed Kalman filter for cooperative localization with integrated measurements. IEEE Trans Aerosp Electron Syst. 2020; 56(4): 3302-3310. doi:10.1109/TAES.2019.2953372
- 26Brown RG, Hwang PY. Introduction to Random Signals and Applied Kalman Filtering: With MATLAB Exercisesch. Vol 6. 4th ed. J Wiley & Sons; 2012: 231-234.
- 27Agniel R, Jury E. Almost sure boundedness of randomly sampled systems. SIAM J Control. 1971; 9(3): 372-384. doi:10.1137/0309027
- 28Tarn TJ, Rasis Y. Observers for nonlinear stochastic systems. IEEE Trans Automat Contr. 1976; 21(4): 441-448. doi:10.1109/TAC.1976.1101300
- 29Deyst J, Price C. Conditions for asymptotic stability of the discrete minimum-variance linear estimator. IEEE Trans Automat Contr. 1968; 13(6): 702-705. doi:10.1109/TAC.1968.1099024
- 30Deyst J. Correction to "Conditions for asymptotic stability of the discrete minimum-variance linear estimator". IEEE Trans Automat Contr. 1973; 18(5): 562-563. doi:10.1109/TAC.1973.1100397
- 31Kanna S, Mandic DP. Stability of distributed extended Kalman filters. Proceedings of the 22nd International Conference on Digital Signal Processing (DSP); August 23–25, 2017:1-5; IEEE, London, UK.
- 32Lewis FL. Optimal and Robust Estimation: with an Introduction to Stochastic Control Theorych. Vol Appendix-A2. 1st ed. John Wiley; 1986: 347-347.
- 33Bar-Shalom Y, Li XR, Kirubarajan T. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Softwarech. Vol 11. John Wiley & Sons; 2004: 488-489.
- 34Yang P, Freeman RA, Lynch KM. Distributed cooperative active sensing using consensus filters. Proceedings of the 2007 IEEE International Conference on Robotics and Automation; 2007:405-410; Rome, Italy.