Volume 31, Issue 3 pp. 360-378
Research Article

A linear programming approach to online set membership parameter estimation for linear regression models

M. Casini

Corresponding Author

M. Casini

Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, Università di Siena, Via Roma 56, Siena, 53100 Italy

Correspondence to: M. Casini, Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche Università di Siena, Via Roma 56, 53100 Siena, Italy.

E-mail: [email protected]

Search for more papers by this author
A. Garulli

A. Garulli

Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, Università di Siena, Via Roma 56, Siena, 53100 Italy

Search for more papers by this author
A. Vicino

A. Vicino

Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, Università di Siena, Via Roma 56, Siena, 53100 Italy

Search for more papers by this author
First published: 11 July 2016
Citations: 22

Summary

This paper presents a new technique for online set membership parameter estimation of linear regression models affected by unknown-but-bounded noise. An orthotopic approximation of the set of feasible parameters is updated at each time step. The proposed technique relies on the solution of a suitable linear program, whenever a new measurement leads to a reduction of the approximating orthotope. The key idea for preventing the size of the linear programs from steadily increasing is to propagate only the binding constraints of these optimization problems. Numerical studies show that the new approach outperforms existing recursive set approximation techniques, while keeping the required computational burden within the same order of magnitude. Copyright © 2016 John Wiley & Sons, Ltd.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.