System identification of a class of Wiener systems with hysteretic nonlinearities
Abdelhadi Radouane
ENSET, University of Mohammed V, Rabat, Morocco
Search for more papers by this authorCorresponding Author
Fouad Giri
Université Normandie, UNICAEN, ENSICAEN, GREYC, 14032 Caen, France
Correspondence to: Fouad Giri, Normandie Université, UNICAEN, ENSICAEN, GREYC 14032 Caen, France.
E-mail: [email protected]
Search for more papers by this authorFaycal Ikhouane
Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Barcelona, 08036 Spain
Search for more papers by this authorTarek Ahmed-Ali
Université Normandie, UNICAEN, ENSICAEN, GREYC, 14032 Caen, France
Search for more papers by this authorFatima-Zahra Chaoui
ENSET, University of Mohammed V, Rabat, Morocco
Search for more papers by this authorAdil Brouri
ENSAM, University of Moulay Ismail, Meknes, Morocco
Search for more papers by this authorAbdelhadi Radouane
ENSET, University of Mohammed V, Rabat, Morocco
Search for more papers by this authorCorresponding Author
Fouad Giri
Université Normandie, UNICAEN, ENSICAEN, GREYC, 14032 Caen, France
Correspondence to: Fouad Giri, Normandie Université, UNICAEN, ENSICAEN, GREYC 14032 Caen, France.
E-mail: [email protected]
Search for more papers by this authorFaycal Ikhouane
Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Barcelona, 08036 Spain
Search for more papers by this authorTarek Ahmed-Ali
Université Normandie, UNICAEN, ENSICAEN, GREYC, 14032 Caen, France
Search for more papers by this authorFatima-Zahra Chaoui
ENSET, University of Mohammed V, Rabat, Morocco
Search for more papers by this authorAdil Brouri
ENSAM, University of Moulay Ismail, Meknes, Morocco
Search for more papers by this authorSummary
Existing works on Wiener system identification have essentially been focused on the case where the output nonlinearity is memoryless. When memory nonlinearities have been considered, the focus has been restricted to backlash like nonlinearities. In this paper, we are considering Wiener systems where the output nonlinearity is a general hysteresis operator captured by the well-known Bouc–Wen model. The Wiener system identification problem is addressed by making use of a steady-state property, obtained in periodic regime, referred to as ‘hysteretic loop assumption’. The complexity of this problem comes from the system nonlinearity as well as its unknown parameters that enter in a non-affine way in the model. It is shown that the linear part of the system is accurately identified using a frequency method. Then, the nonlinear hysteretic subsystem is identified, on the basis of a parameterized representation, using a prediction-error approach. Copyright © 2016 John Wiley & Sons, Ltd.
References
- 1Boyd S, Chua LO. Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Transactions on Circuits and Systems CAS-32 1985; 11: 1150–1161.
- 2Vörös J. Parameter identification of wiener systems with discontinuous nonlinearities. Systems and Control Letters 1997; 44: 363–372.
- 3Vörös J, Compound operator decomposition and its application to Hammerstein and Wiener systems. In Block-oriented Nonlinear System Identification, Giri, Bai (eds). Springer: U.K., 2010; 35–42.
10.1007/978-1-84996-513-2_4 Google Scholar
- 4Bruls J, Chou CT, Heverkamp BRJ, Verhaegen M. Linear and nonlinear system identification using separable least squares. European Journal of Control 1999; 5: 116–128.
- 5Lovera M, Gustafsson T, Verhaegen M. Recursive subspace identification of linear and non-linear Wiener state–space models. Automatica 2000; 36: 1639–1650.
- 6Vanbeylen L, Pintelon R, Blind maximum-likelihood identification of Wiener and Hammerstein nonlinear block structures. In Block-Oriented Nonlinear System Identification, Giri, Bai (eds). Springer; Berlin Heidelberg, 2010; 279–298.
10.1007/978-1-84996-513-2_17 Google Scholar
- 7Vanbeylen L, Pintelon R, Schoukens J. Blind maximum-likelihood identification of Wiener systems. IEEE Transactions on Signal Processing 2009; 57(8): 3017–3029.
- 8Westwick D, Verhaegen M. Identifying MIMO Wiener systems using subspace model identification methods. Signal Processing 1996; 52: 235–258.
- 9Wigren T. Recursive prediction error identification using the nonlinear Wiener model. Automatica 1993; 29: 1011–1025.
- 10Wigren T. Convergence analysis of recursive identification algorithm based on the nonlinear Wiener model. IEEE Trans Automatic Control 1994; 39: 2191–2205.
- 11Wills A, Ljung L, Wiener system identification using the maximum likelihood method. In Block-oriented nonlinear system identificationSpringer: U.K., 2010; 89–110.
10.1007/978-1-84996-513-2_7 Google Scholar
- 12Wills A, Schön TB, Ljung L, Ninness B Blind identification of Wiener models. IFAC World Congress: Milan, Italy, 2011.
- 13Greblicki W, Pawlak M Nonparametric System Identification. Cambridge University Press, 2008.
10.1017/CBO9780511536687 Google Scholar
- 14Mzyk G, Parametric versus nonparametric approach to Wiener systems identification. In Block-oriented nonlinear system identification, Giri F, EW Bai (eds).Springer: U.K., 2010; 111–126.
10.1007/978-1-84996-513-2_8 Google Scholar
- 15Crama P, Schoukens J. Initial estimates of Wiener and Hammerstein systems using multisine excitation. IEEE Transactions on Instrum & Measurement 2001; 50: 1791–1795.
- 16Crama P, Schoukens J. Computing an initial estimate of a Wiener–Hammerstein system with a random phase multisine excitation. IEEE Trans Instrum & Measur (2005); 54: 117–122.
- 17Giri F, Rochdi Y, Chaoui FZ. An analytic geometry approach to Wiener system frequency identification. IEEE Trans Automatic Control 2009; 54(4): 683–696.
- 18Schoukens M, Rolain Y. Parametric identification of parallel wiener systems. IEEE Trans Instrum Measurements 2012; 61: 2825–2832.
- 19Bai EW. Frequency domain identification of Wiener models. Automatica 2003; 39: 1521–1530.
- 20Bai EW, Reyland J. Towards identification of Wiener systems with the least amount of a priori information. IIR cases. Automatica (2009); 45(4): 956–964.
- 21Enqvist M, Identification of block-oriented systems using the invariance property. In Block-oriented Nonlinear System Identification, Giri, Bai (eds).: Springer: Berlin Heidelberg, 2010; 147–160.
10.1007/978-1-84996-513-2_10 Google Scholar
- 22Hu XL, Chen HF. Recursive identification for Wiener systems using Gaussian inputs. Asian Journal of Control 2008; 10(3): 341–350.
- 23Pelckmans K. MINLIP for the identification of monotone Wiener systems. Automatica 2011; 47: 2298–2305.
- 24Lyzell C, Andersen M, Enqvist M A convex relaxation of a dimension reduction problem using the nuclear norm. IEEE Conference on Decision and Control, Maui, Hawaii, USA, 2012; 2852–2857.
- 25Lyzell C, Enqvist M Inverse regression for the Wiener class of systems. IFAC Symp. On System Identification, Brussels, Belgium, 2012.
- 26Cerone V, Piga D, Regrunto D Parameter bounds evaluation for linear system with output backlash. IFAC Symposium on System Identification, Saint-Malo, France, 2009; 575–580.
- 27Dong R, Tan Q, Tan Y. Recursive identification algorithm for dynamic systems with output backlash and its convergence. International Journal of Applied Mathematics and Computer Science 2009; 19: 631–638.
- 28Giri F, Radouane E, Brouri A, Chaoui FZ. Combined frequency-prediction error identification approach for Wiener systems with backlash and backlash-inverse operators. Automatica 2014; 50(3): 768–783.
- 29Giri F, Rochdi Y, Brouri A, Radouane A, Chaoui FZ. Frequency identification of nonparametric Wiener systems containing backlash nonlinearities. Automatica 2013; 49: 124–137.
- 30Reyland J, Bai EW. Generalized Wiener system identification: general backlash nonlinearity and finite impulse response linear part. International Journal of Adaptive Control and Signal Processing 2013. 10.1002/acs.2437.
- 31Ikhouane F, Rodellar J Systems with Hysteresis: Analysis, Identification and Control Using the Bouc–Wen Model. John Wiley & Sons: Sussex, UK, 2007.
10.1002/9780470513200 Google Scholar
- 32Aguirre N, Ikhouane F, Rodellar J, Christenson R. “Parametric identification of the Dahl model for large scale MR dampers”. Structural Control and Health Monitoring 2012; 19: 332–347.
- 33Gomis-Bellmunt O, Ikhouane F, Montesinos-Miracle D. Control of a piezoelectric actuator considering hysteresis. Journal of Sound and Vibration 2009; 326(3): 383–399.
- 34Kiong TK, Sunan H Modeling and Control of Precision Actuators. CRC Press: Boca Raton, FL, USA, 2014.
- 35Hua X, Li S, Penga H. A comparative study of equivalent circuit models for Li-ion batteries. Journal of Power Sources 2012; 198: 359–367.
- 36Mayergoyz ID Mathematical Models of Hysteresis and Their Applications. Elsevier Inc., 2003.
- 37Radouane A, Giri F, Ikhouane F, Chaoui FZ Wiener System Identification in Presence of Hysteresis Nonlinearities. IFAC World Congress: Cap Town, South Africa, 2014.
- 38Ljung L, System identification. In Theory for the userPrentice Hall: NJ, USA, 1999.
10.1002/047134608X.W1046 Google Scholar
- 39Pintelon R, Guillaume P, Rolain Y, Schoukens J, Van hamme H. Parametric identification of transfer functions in the frequency domain–a survey. IEEE Transactions on Automatic Control 1994; 39(11): 2245–2260.
- 40Schoukens J, Dobrowiecki T, Pintelon R. Parametric and nonparametric identification of linear systems in the presence of nonlinear distortions – a frequency domain approach. IEEE Transactions on Automatic Control 1998; 43(2): 176–190.
- 41Ikhouane F, Gomis-Bellmunt O. A limit cycle approach for the parametric identification of hysteretic systems. Systems & Control Letters 2008; 57: 663–669.
- 42Kuhnen K. Modeling, identification and compensation of complex hysteretic nonlinearities: a modified Prandtl–Ishlinkskii approach. European Journal of Control 2003; 9(4): 407–418.
- 43Tan X, Baras JS. Adaptive identification and control of hysteresis in smart materials. IEEE Transactions on Automatic Control 2005; 50(6): 827–839.