Machine Learning-Aided Rational Screening of Task-Specific Ionic Liquids
Ruofan Gu
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorZhen Song
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorRuofan Gu
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorZhen Song
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorJingzheng Ren
Search for more papers by this authorSummary
Ionic liquids (ILs) are renowned for their unique physicochemical properties, flexible structural designability, and expansive chemical diversity. These attributes make ILs highly promising for a wide range of chemical processes, as they can be tailored to meet specific target properties. The fundamental challenge, however, lies in the efficient and reliable customization of the appropriate IL for designated applications. In this context, computer-aided molecular design (CAMD) methodologies have gained prominence for the rational screening of ILs, which is also commonly referred to as computer-aided ionic liquid design (CAILD). Based on the previous contributions of our group to this field, this chapter tries to offer a mini review of the use of machine learning to facilitate the rational selection of ILs. Within the context of CAILD, this chapter delves into critical elements concerning both forward structure–property modeling and the reverse molecular design of ILs. The forward modeling task includes diverse molecular representations of ILs and their associated representative models, particularly focusing on thermodynamic properties. Correspondingly, the reverse molecular design section summarizes efforts in establishing various molecular design frameworks. Finally, some insights into future directions are also offered.
References
- Rogers , R.D. and Seddon , K.R. ( 2003 ). Ionic liquids – solvents of the future? Science 302 ( 5646 ): 792 – 793 .
- Dong , K. , Liu , X. , Dong , H. et al. ( 2017 ). Multiscale studies on ionic liquids . Chemical Reviews 117 ( 10 ): 6636 – 6695 .
- Welton , T. ( 1999 ). Room-temperature ionic liquids. Solvents for synthesis and catalysis . Chemical Reviews 99 ( 8 ): 2071 – 2083 .
- Giernoth , R. ( 2010 ). Task-specific ionic liquids . Angewandte Chemie International Edition 49 ( 16 ): 2834 – 2839 .
- Song , Z. , Zhang , J. , Zeng , Q. et al. ( 2016 ). Effect of cation alkyl chain length on liquid-liquid equilibria of {ionic liquids plus thiophene plus heptane}: COSMO-RS prediction and experimental verification . Fluid Phase Equilibria 425 : 244 – 251 .
- Lei , Y. , Yu , Z. , Wei , Z. et al. ( 2022 ). Energy-efficient separation of propylene/propane by introducing a tailor-made ionic liquid solvent . Fuel 326 : 124930 .
- Lei , Z. , Dai , C. , Zhu , J. et al. ( 2014 ). Extractive distillation with ionic liquids: a review . AIChE Journal 60 ( 9 ): 3312 – 3329 .
- Malik , H. , Khan , H.W. , Shah , M.U.H. et al. ( 2023 ). Screening of ionic liquids as green entrainers for ethanol water separation by extractive distillation: COSMO-RS prediction and aspen plus simulation . Chemosphere 311 : 136901 .
- Lei , Y. , Yu , Z. , Wei , Z. et al. ( 2023 ). Structure optimization of task-specific ionic liquids targeting low-carbon-emission ethylbenzene production . Separation and Purification Technology 308 : 122827 .
- Song , Z. , Zhang , C. , Qi , Z. et al. ( 2018 ). Computer-aided design of ionic liquids as solvents for extractive desulfurization . AIChE Journal 64 ( 3 ): 1013 – 1025 .
- Lei , Z. , Zhang , J. , Li , Q. et al. ( 2009 ). UNIFAC model for ionic liquids . Industrial & Engineering Chemistry Research 48 ( 5 ): 2697 – 2704 .
- Chen , Y. , Kontogeorgis , G.M. , and Woodley , J.M. ( 2019 ). Group contribution based estimation method for properties of ionic liquids . Industrial and Engineering Chemistry Research 58 ( 10 ): 4277 – 4292 .
- Song , Z. , Zhou , T. , Qi , Z. et al. ( 2020 ). Extending the UNIFAC model for ionic liquid–solute systems by combining experimental and computational databases . AIChE Journal 66 ( 2 ): e16821 .
- Müller , S. ( 2019 ). Flexible heuristic algorithm for automatic molecule fragmentation: application to the UNIFAC group contribution model . Journal of Cheminformatics 11 ( 1 ): 57 .
- Hukkerikar , A.S. , Sarup , B. , Ten Kate , A. et al. ( 2012 ). Group-contribution + (GC + ) based estimation of properties of pure components: improved property estimation and uncertainty analysis . Fluid Phase Equilibria 321 : 25 – 43 .
- Hukkerikar , A.S. , Kalakul , S. , Sarup , B. et al. ( 2012 ). Estimation of environment-related properties of chemicals for design of sustainable processes: development of group-contribution + (GC + ) property models and uncertainty analysis . Journal of Chemical Information and Modeling 52 ( 11 ): 2823 – 2839 .
- Wu , K.J. , Chen , Q.L. , and He , C.H. ( 2014 ). Speed of sound of ionic liquids: database, estimation, and its application for thermal conductivity prediction . AIChE Journal 60 ( 3 ): 1120 – 1131 .
- Wu , K.J. , Luo , H. , and Yang , L. ( 2016 ). Structure-based model for prediction of electrical conductivity of pure ionic liquids . AIChE Journal 62 ( 10 ): 3751 – 3762 .
- Klamt , A. and Eckert , F. ( 2000 ). COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids . Fluid Phase Equilibria 172 ( 1 ): 43 – 72 .
- Klamt , A. ( 2005 ). COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design , 1 – 234 . Elsevier .
- Eckert , F. and Klamt , A. ( 2002 ). Fast solvent screening via quantum chemistry: COSMO-RS approach . AIChE Journal 48 ( 2 ): 369 – 385 .
- Palomar , J. , Ferro , V.R. , Torrecilla , J.S. et al. ( 2007 ). Density and molar volume predictions using COSMO-RS for ionic liquids. An approach to solvent design . Industrial and Engineering Chemistry Research 46 ( 18 ): 6041 – 6048 .
- Palomar , J. , Torrecilla , J.S. , Lemus , J. et al. ( 2008 ). Prediction of non-ideal behavior of polarity/polarizability scales of solvent mixtures by integration of a novel COSMO-RS molecular descriptor and neural networks . Physical Chemistry Chemical Physics 10 ( 39 ): 5967 – 5975 .
- Diedenhofen , M. and Klamt , A. ( 2010 ). COSMO-RS as a tool for property prediction of IL mixtures – a review . Fluid Phase Equilibria 294 ( 1–2 ): 31 – 38 .
- Lemaoui , T. , Darwish , A.S. , Hammoudi , N.E.H. et al. ( 2020 ). Prediction of electrical conductivity of deep eutectic solvents using COSMO-RS sigma profiles as molecular descriptors: a quantitative structure-property relationship study . Industrial and Engineering Chemistry Research 59 ( 29 ): 13343 – 13354 .
-
Wang , J.
,
Song , Z.
,
Chen , L.
et al. (
2021
).
Prediction of CO
2
solubility in deep eutectic solvents using random forest model based on COSMO-RS-derived descriptors
.
Green Chemical Engineering
2
(
4
):
431
–
440
.
10.1016/j.gce.2021.08.002 Google Scholar
- Palomar , J. , Torrecilla , J.S. , Ferro , V.R. et al. ( 2008 ). Development of an a priori ionic liquid design tool. 1. Integration of a novel COSMO-RS molecular descriptor on neural networks . Industrial and Engineering Chemistry Research 47 ( 13 ): 4523 – 4532 .
- Zhao , Y. , Zeng , S. , Huang , Y. et al. ( 2015 ). Estimation of heat capacity of ionic liquids using S σ-profile molecular descriptors . Industrial and Engineering Chemistry Research 54 ( 51 ): 12987 – 12992 .
- Chen , G. , Song , Z. , and Qi , Z. ( 2021 ). Transformer-convolutional neural network for surface charge density profile prediction: enabling high-throughput solvent screening with COSMO-SAC . Chemical Engineering Science 246 : 117002 .
- Chen , G. , Song , Z. , Qi , Z. et al. ( 2023 ). Generalizing property prediction of ionic liquids from limited labeled data: a one-stop framework empowered by transfer learning . Digital Discovery 2 ( 3 ): 591 – 601 .
- Mikolov , T. , Sutskever , I. , Chen , K. et al. ( 2013 ). Distributed representations of words and phrases and their compositionality . In: Advances in Neural Information Processing Systems (ed. C.J. Burges , L. Bottou , M. Welling , et al.), 26 . Curran Associates, Inc.
- Chen , G. , Song , Z. , Qi , Z. et al. ( 2021 ). Neural recommender system for the activity coefficient prediction and UNIFAC model extension of ionic liquid-solute systems . AIChE Journal 67 ( 4 ): e17171 .
- Klamt , A. , Jonas , V. , Bürger , T. et al. ( 1998 ). Refinement and parametrization of COSMO-RS . Journal of Physical Chemistry A 102 ( 26 ): 5074 – 5085 .
- Lin , S.T. and Sandler , S.I. ( 2002 ). A priori phase equilibrium prediction from a segment contribution solvation model . Industrial and Engineering Chemistry Research 41 ( 5 ): 899 – 913 .
- Klamt , A. and Schüürmann , G. ( 1993 ). COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient . Journal of the Chemical Society, Perkin Transactions 2 ( 5 ): 799 – 805 .
- Ferreira , A.R. , Freire , M.G. , Ribeiro , J.C. et al. ( 2011 ). An overview of the liquid-liquid equilibria of (ionic liquid + hydrocarbon) binary systems and their modeling by the conductor-like screening model for real solvents . Industrial and Engineering Chemistry Research 50 ( 9 ): 5279 – 5294 .
- Ferreira , A.R. , Freire , M.G. , Ribeiro , J.C. et al. ( 2012 ). Overview of the liquid-liquid equilibria of ternary systems composed of ionic liquid and aromatic and aliphatic hydrocarbons, and their modeling by COSMO-RS . Industrial and Engineering Chemistry Research 51 ( 8 ): 3483 – 3507 .
- Qin , H. , Wang , Z. , Zhou , T. et al. ( 2021 ). Comprehensive evaluation of COSMO-RS for predicting ternary and binary ionic liquid-containing vapor-liquid equilibria . Industrial and Engineering Chemistry Research 60 ( 48 ): 17761 – 17777 .
- Zhou , T. , Chen , L. , Ye , Y. et al. ( 2012 ). An overview of mutual solubility of ionic liquids and water predicted by COSMO-RS . Industrial and Engineering Chemistry Research 51 ( 17 ): 6256 – 6264 .
- Peng , D. , Zhang , J. , Cheng , H. et al. ( 2017 ). Computer-aided ionic liquid design for separation processes based on group contribution method and COSMO-SAC model . Chemical Engineering Science 159 : 58 – 68 .
- Zhang , J. , Peng , D. , Song , Z. et al. ( 2017 ). COSMO-descriptor based computer-aided ionic liquid design for separation processes. Part I: Modified group contribution methodology for predicting surface charge density profile of ionic liquids . Chemical Engineering Science 162 : 355 – 363 .
-
Song , Z.
,
Li , X.
,
Chao , H.
et al. (
2019
).
Computer-aided ionic liquid design for alkane/cycloalkane extractive distillation process
.
Green Energy & Environment
4
(
2
):
154
–
165
.
10.1016/j.gee.2018.12.001 Google Scholar
- Weidlich , U. and Gmehling , J. ( 1987 ). A modified UNIFAC model. 1. Prediction of VLE, hE, and. gamma..infin . Industrial and Engineering Chemistry Research 26 ( 7 ): 1372 – 1381 .
- Kato , R. and Gmehling , J. ( 2005 ). Systems with ionic liquids: measurement of VLE and γ ∞ data and prediction of their thermodynamic behavior using original UNIFAC, mod. UNIFAC(Do) and COSMO-RS(Ol) . Journal of Chemical Thermodynamics 37 ( 6 ): 603 – 619 .
- Nebig , S. and Gmehling , J. ( 2011 ). Prediction of phase equilibria and excess properties for systems with ionic liquids using modified UNIFAC: typical results and present status of the modified UNIFAC matrix for ionic liquids . Fluid Phase Equilibria 302 ( 1–2 ): 220 – 225 .
- Kato , R. and Gmehling , J. ( 2005 ). Measurement and correlation of vapor-liquid equilibria of binary systems containing the ionic liquids [EMIM][(CF 3 SO 2 ) 2 N], [BMIM][(CF 3 SO 2 ) 2 N], [MMIM][(CH 3 ) 2 PO 4 ] and oxygenated organic compounds respectively water . Fluid Phase Equilibria 231 ( 1 ): 38 – 43 .
- Nebig , S. , Bölts , R. , and Gmehling , J. ( 2007 ). Measurement of vapor-liquid equilibria (VLE) and excess enthalpies ( H E ) of binary systems with 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and prediction of these properties and γ ∞ using modified UNIFAC (Dortmund) . Fluid Phase Equilibria 258 ( 2 ): 168 – 178 .
- Hector , T. and Gmehling , J. ( 2014 ). Present status of the modified UNIFAC model for the prediction of phase equilibria and excess enthalpies for systems with ionic liquids . Fluid Phase Equilibria 371 : 82 – 92 .
- Song , Z. , Shi , H. , Zhang , X. et al. ( 2020 ). Prediction of CO 2 solubility in ionic liquids using machine learning methods . Chemical Engineering Science 223 : 115752 .
- Song , Z. , Zhou , T. , Zhang , J. et al. ( 2015 ). Screening of ionic liquids for solvent-sensitive extraction – with deep desulfurization as an example . Chemical Engineering Science 129 : 69 – 77 .
- Qin , L. , Zhang , J. , Cheng , H. et al. ( 2016 ). Selection of imidazolium-based ionic liquids for vitamin E extraction from deodorizer distillate . ACS Sustainable Chemistry and Engineering 4 ( 2 ): 583 – 590 .
- Qin , H. , Cheng , J. , Yu , H. et al. ( 2022 ). Hierarchical ionic liquid screening integrating COSMO-RS and Aspen Plus for selective recovery of hydrofluorocarbons and hydrofluoroolefins from a refrigerant blend . Industrial and Engineering Chemistry Research 61 ( 11 ): 4083 – 4094 .
- Song , Z. , Zhou , T. , Qi , Z. et al. ( 2017 ). Systematic method for screening ionic liquids as extraction solvents exemplified by an extractive desulfurization process . ACS Sustainable Chemistry and Engineering 5 ( 4 ): 3382 – 3389 .
- Bechtel S , Song Z , Zhou T , et al. Integrated process and ionic liquid design by combining flowsheet simulation with quantum-chemical solvent screening . Computer Aided Chemical Engineering 2018 , 44 , 2167 – 72 . Elsevier . Edited by Mario R. Eden, Marianthi G. Ierapetritou, Gavin P. Towler.
- Zhang , X. , Wang , J. , Song , Z. et al. ( 2021 ). Data-driven ionic liquid design for CO 2 capture: molecular structure optimization and DFT verification . Industrial and Engineering Chemistry Research 60 ( 27 ): 9992 – 10000 .
- Wang , J. , Tang , X. , Qi , Z. et al. ( 2022 ). Ionic liquids as thermal fluids for solar energy storage: computer-aided molecular design and TRNSYS simulation . ACS Sustainable Chemistry and Engineering 10 ( 6 ): 2248 – 2261 .
- Zhang , X. , Ding , X. , Song , Z. et al. ( 2021 ). Integrated ionic liquid and rate-based absorption process design for gas separation: global optimization using hybrid models . AIChE Journal 67 ( 10 ): e17340 .
- Chatel , G. , Pereira , J.F.B. , Debbeti , V. et al. ( 2014 ). Mixing ionic liquids – “simple mixtures” or “double salts”? Green Chemistry 16 ( 4 ): 2051 – 2083 .
- Song , Z. , Hu , X. , Zhou , Y. et al. ( 2019 ). Rational design of double salt ionic liquids as extraction solvents: separation of thiophene/ n -octane as example . AIChE Journal 65 ( 8 ): e16625 .
-
Xie , K.
,
Chen , J.
,
Cheng , J.
et al. (
2023
).
Enhancing aromatics extraction by double salt ionic liquids: rational screening-validation and mechanistic insights
.
AIChE Journal
70
:
e18301
.
10.1002/aic.18301 Google Scholar