Direct Bonding
Hideki Takagi
Device Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Namiki 1-2-1, Tsukuba, Ibaraki, 305-8564 Japan
Search for more papers by this authorHideki Takagi
Device Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Namiki 1-2-1, Tsukuba, Ibaraki, 305-8564 Japan
Search for more papers by this authorMasayoshi Esashi
Search for more papers by this authorSummary
Wafer direct bonding was first developed in order to fabricate silicon-on-insulator (SOI) wafers. Smart Cut process is suitable for thinner SOI wafers. Hydrophilic wafer bonding is a method to bond wafers using hydrogen bonds between – OH groups on hydrophilic surface of wafers. This method is often called as “wafer direct bonding” or “wafer fusion bonding.” In the method, the wafers to be bonded are cleaned by chemical solutions such as NH3/H2O2 and H2SO4/H2O2 mixture. The surface roughness of the wafers is important to achieve the bonding. The surface activated bonding (SAB) is originally based on a simple idea that atoms on two clean surfaces can make strong interatomic bonds even at room temperature when they are mated. SAB originally uses cleaning of material surfaces in vacuum by sputter etching using high-energy ion/atom beam of inert gases. The concept of SAB has been expanded in order to bond wide range of materials.
References
- Lasky, J.B. (1986). Wafer bonding for silicon-on-insulator technologies. Appl. Phys. Lett. 48 (1): 78–80.
- Maszara, W.P., Goetz, G., Caviglia, A., and McKitterick, J.B. (1988). Bonding of silicon wafers for silicon-on-insulator. J. Appl. Phys. 64 (10): 4943–4950.
- Bruel, M., Asper, B., and Auverton-Herve, A.-J. (1997). Smart-cut: a new silicon on insulator material technology based on hydrogen implantation and wafer bonding. Jpn. J. Appl. Phys. 36 (3B): 1636–1641.
-
Tong, Q.Y. and Goesele, U.M. (1999). Wafer bonding and layer splitting for microsystems.
Adv. Mater.
11 (17): 1409–1425.
10.1002/(SICI)1521-4095(199912)11:17<1409::AID-ADMA1409>3.0.CO;2-W CAS Web of Science® Google Scholar
- Haisma, J., Spierings, B.A.C.M., Biermann, U.K.P., and Gorkum, A.A.v. (1994). Diversity and feasibility of direct bonding—a survey of a dedicated optical technology. Appl. Opt. 33 (7): 1154–1169.
- Suni, T., Henttinen, K., Suni, I., and Mäkinen, J. (2002). Effects of plasma activation on hydrophilic bonding of Si and SiO2 . J. Electrochem. Soc. 149 (6): G348–G351.
- Pasquariello, D. and Hjort, K. (2002). Plasma-assisted InP-to-Si low temperature wafer bonding. IEEE J. Sel. Top. Quant. Electron. 8 (1): 118–131.
- Christel, L., Petersen, K., Barth, P. et al. (1990). Single-crystal silicon pressure sensors with 500 × overpressure protection. Sens. Actuators A 21-23: 84–88.
- Welham, C.W., Greenwood, J., and Bertioli, M.M. (1999). A high accuracy resonant pressure sensor by fusion bonding and trench etching. Sens. Actuators A 76: 298–304.
-
Pedersen, T., Fragiacomo, G., Hansen, O., and Thomsen, E.V. (2009). Highly sensitive micromachined capacitive pressure sensor with reduced hysteresis and low parasitic capacitance.
Sens. Actuators A
157: 35–41.
10.1016/j.sna.2009.07.013 Google Scholar
- Kwa, T.A. and Wolffenbuttel, R.F. (1992). Integrated grating/detector array fabricated in silicon using micromachining techniques. Sens. Actuators A 31: 259–266.
- Enoksson, P., Stemme, G., and Stemme, E. (1996). Silicon tube structures for a fluid-density sensor. Sens. Actuators A 54: 558–562.
- Brookhuis, R.A., Lammerink, T.S.J., Wiegerink, R.J. et al. (2012). 3D force sensors for biomedical applications. Sens. Actuators A 182: 28–33.
- Ishihara, T., Sekine, M., Ishikura, Y. et al. (2005). Sapphire-based capacitance diaphragm gauge for high temperature applications. Digest of Technical Papers, The 13th International Conference on Solid State Sensors, Actuators and Microsystems (Transducers'05), Seoul, Korea (5–9 June 2005), 503–506.
- Li, W., Liang, T., Chen, Y. et al. (2017). Interface characteristics of sapphire direct bonding for high-temperature applications. Sensors 17: 2080.
- Suga, T., Takahashi, Y., Takagi, H. et al. (1992). Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method. Acta Metall. Mater. 40: S1133–S1137.
- Takagi, H., Kikuchi, K., Maeda, R. et al. (1996). Surface activated bonding of silicon wafers at room temperature. Appl. Phys. Lett. 68 (16): 2222–2224.
- Takagi, H., Maeda, R., and Suga, T. (2003). Wafer-scale spontaneous bonding of silicon wafers by argon-beam surface activation at room-temperature. Sens. Actuators A 105: 98–102.
- Takagi, H., Maeda, R., Hosoda, N., and Suga, T. (1999). Transmission electron microscope observations of Si/Si interface bonded at room temperature by Ar beam surface activation. Jpn. J. Appl. Phys. 38 (3A): 1589–1594.
- Takagi, H., Maeda, R., Chung, T.R. et al. (1998). Effect of surface roughness on room-temperature wafer bonding by Ar beam surface activation. Jpn. J. Appl. Phys. 37 (7): 4197–4203.
- Kurashima, Y., Maeda, A., and Takagi, H. (2013). Room temperature wafer direct bonding of smooth Si surfaces recovered by Ne beam surface treatments. Appl. Phys. Lett. 102: 251605.
- Chung, T.R., Hosoda, N., Suga, T., and Takagi, H. (1998). 1.3 μm InGaAsP/InP lasers on GaAs substrate fabricated by the surface activated wafer bonding method at room temperature. Appl. Phys. Lett. 72 (13): 1565–1566.
- Suda, J., Okuda, T., Uchida, H. et al. (2013). Characterization of 4H-SiC homoepitaxial layers grown on 100-mm-diameter 4H-SiC/poly-SiC bonded substrates. Technical Digest International Conference on Silicon Carbide Related Materials 2013, Miyazaki, Japan (29 September – 4 October 2013), 358.
- Yakushiji, K., Takagi, H., Watanabe, N. et al. (2017). Three-dimensional integration of magnetic tunnel junctions for magnetoresistive random access memory application. Appl. Phys. Express 10: 063002.
-
Higurashi, E., Okumura, K., Kunimune, Y. et al. (2017). Room-temperature bonding of wafers with smooth Au thin films in ambient air using a surface-activated bonding method.
IEICE Trans. Electron.
E100 (2): 156–160.
10.1587/transele.E100.C.156 Google Scholar
- Takagi, H., Maeda, R., Hosoda, N., and Suga, T. (1999). Room-temperature bonding of lithium niobite and silicon wafers by argon-beam surface activation. Appl. Phys. Lett. 74 (16): 2387–2389.
- Takagi, H. and Maeda, R. (2006). Direct bonding of two crystal substrates at room temperature by Ar-beam surface activation. J. Cryst. Growth 292: 429–432.
-
Shimatsu, T. and Uomoto, M. (2010). Atomic diffusion bonding of wafers with thin nanocrystalline metal films.
J. Vac. Sci. Technol.
B28 (4): 706–714.
10.1116/1.3437515 Google Scholar
- Kondou, R. and Suga, T. (2011). Si nonoadhesion layer for enhanced SiO2-SiN wafer bonding. Scr. Mater. 65: 320–322.
- Matsumae, T., Fujino, M., and Suga, T. (2015). Room-temperature bonding method for polymer substrate of flexible electronics by surface activation using nano-adhesion layers. Jpn. J. Appl. Phys. 54: 101602.
- Shigetou, A., Ito, T., Sawada, K., and Suga, T. (2008). Bumpless interconnect of 6-μm pitch Cu electrodes at room temperature. Proceedings 58th Electronic Components Technology Conference 2008, Orlando, Florida USA (27–30 May 2008), 1405–1409.
- Miura, M., Matsuda, T., Ueda, M. et al. (2005). Temperature compensated LiTaO3/sapphire SAW substrate for high power applications. Proceedings IEEE International Ultrasonic Symposium 2005, Rotterdam, Netherlands (18–21 September 2005), 573–576.
- Takai, T., Iwamoto, H., Takamine, Y. et al. (2019). High-performance SAW resonator with simplified LiTaO3/SiO2 double layer structure on Si substrate. Proceedings IEEE International Ultrasonic Symposium 2019, Glasgow, Scotland UK (6–9 October 2019), 1006–1013.
- Dimroth, F., Tibbits, T.N.D., Niemeyer, M. et al. (2016). Four-junction wafer-bonded concentrator solar cells. IEEE J. Photovoltaics 6 (1): 343–349.
- Utsumi, J., Ide, K., and Ichiyanagi, Y. (2016). Room temperature bonding of SiO2 and SiO2 by surface activated bonding method using Si ultrathin films. Jpn. J. Appl. Phys. 55: 026503.
- Jung, A., Zhang, Y., Arroyo Rojas Dasilva, Y. et al. (2018). Electrical properties of Si-Si interfaces obtained by room temperature covalent wafer bonding. J. Appl. Phys. 123: 085701.