The Potential of Microalgae for Biotechnology: A Focus on Carotenoids
Nicolas von Alvensleben
James Cook University, College of Science and Engineering, Townsville, QLD, 4811 Australia
Search for more papers by this authorKirsten Heimann
Flinders University, College of Medicine and Public Health, Adelaide, SA, 5042 Australia
Search for more papers by this authorNicolas von Alvensleben
James Cook University, College of Science and Engineering, Townsville, QLD, 4811 Australia
Search for more papers by this authorKirsten Heimann
Flinders University, College of Medicine and Public Health, Adelaide, SA, 5042 Australia
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorSummary
Carotenoids are lipid-soluble pigments synthesized only in plants, fungi, and certain microorganisms and serve important functions in cellular responses to oxidative stress. In humans, carotenoids perform several therapeutic functions, such as antioxidant effects that include singlet oxygen quenching, prevention of age-related macular degeneration and cardiovascular disease, and immunomodulatory, antitumor, and anticarcinogenesis activity. Microalgae are ideal cell factories for producing high-value carotenoids, as they combine fast growth with an active isoprenoid production pathway and intracellular storage. Potential bio-product markets range from feed additives in aquaculture/agriculture to pharmaceutical applications. Microalgal carotenoid production is influenced by several environmental factors, which can be used to improve productivities, a vital economic aspect. Due to the complexity of functional responses, a solid understanding of carotenogenesis and environmental conditions that generate reactive oxygen species is required. Consequently, we provide a brief overview of carotenogenesis, followed by a concise treatise of carotenoid function, reactive oxygen scavenging mechanisms, and factors that tune carotenoid synthesis. We conclude by reviewing the nutraceutical potential of specific carotenoid groups, their therapeutic benefits and economic potential, in light of steadily decreasing acceptance of food enrichment with synthetic additives.
References
- Graham, J.E., Wilcox, L.W., and Graham, L.E. (2008) Algae, Pearson Education, London.
-
Heimann, K. and Huerlimann, R. (2015) Microalgal classification: major classes and genera of commercial microalgal species, in Handbook of Marine Microalgae (ed. S.-W. Kim), Elsevier, pp. 25–41.
10.1016/B978-0-12-800776-1.00003-0 Google Scholar
- Lichtenthaler, H.K. (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 47–65.
- Chen, M., Schliep, M., Willows, R.D. et al. (2010) A red-shifted chlorophyll. Science, 329 (5997), 1318–1319.
- Raven, J.A. (2011) The cost of photoinhibition. Physiol. Plant., 142, 87–104.
-
Haskell, M. (2013) Provitamin A carotenoids as a dietary source of vitamin A, in Carotenoids and Human Health (ed. S.A. Tanumihardjo), Humana Press, pp. 249–260.
10.1007/978-1-62703-203-2_15 Google Scholar
- Moeller, S.M., Jacques, P.F., and Blumberg, J.B. (2000) The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J. Am. Coll. Nutr., 19 (Suppl. 5), 522S–527S.
- Cunningham, F.X. Jr. and Gantt, E. (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 557–583.
- Mulders, K.J.M., Lamers, P.P., Martens, D.E. et al. (2014) Phototrophic pigment production with microalgae: biological constraints and opportunities. J. Phycol., 50 (2), 229–242.
- Demmig-Adams, B. and Adams, W.W. (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci., 1 (1), 21–26.
-
Panaigua-Michel, J., Olmos-Soto, J., and Acosta Ruiz, M. (2012) Pathways of carotenoid synthesis in bacteria and microalgae, in Microbial Carotenoids from Bacteria and Microalgae (ed. J.L. Barredo), Humana Press, Springer, pp. 1–12.
10.1007/978-1-61779-879-5_1 Google Scholar
- Steinbrenner, J. and Linden, H. (2001) Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis . Plant Physiol., 125 (2), 810–817.
- Lohr, M., Schwender, J., and Polle, J.E.W. (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci., 185–186, 9–22.
- Lu, S. and Li, L. (2008) Carotenoid metabolism: biosynthesis, regulation, and beyond. J. Integr. Plant Biol., 50 (7), 778–785.
- Lee, P.C. and Schmidt-Dannert, C. (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl. Microbiol. Biotechnol., 60 (1–2), 1–11.
- Cordero, B.F., Couso, I., Leon, R. et al. (2011) Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis . Appl. Microbiol. Biotechnol., 91 (2), 341–351.
-
Wang, Y. and Chen, T.Y. (2008) The biosynthetic pathway of carotenoids in the astaxanthin-producing green alga Chlorella zofingiensis
. World J. Microbiol. Biotechnol., 24 (12), 2927–2932.
10.1007/s11274-008-9834-z Google Scholar
- Demmig-Adams, B. and Adams, W.W. (2002) Antioxidants in photosynthesis and human nutrition. Science, 298 (5601), 2149–2153.
-
Falkowski, P.G. and Raven, J.A. (2007) Aquatic Photosynthesis, Princeton University Press, Princeton, New Jersey.
10.1515/9781400849727 Google Scholar
- Sukenik, A., Livne, A., Neori, A. et al. (1992) Purification and characterization of a light-harvesting chlorophyll-protein complex from the marine eustigmatophyte Nannochloropsis sp. Plant Cell Physiol., 33 (8), 1041–1048.
- Romero, F., Fernández-Chimeno, R.I., de la Fuente, J.L. et al. (2012) Selection and taxonomic identification of carotenoid-producing actinomycetes, in Microbial Carotenoids from Bacteria and Microalgae (ed. J.L. Barredo), Humana Press, Springer, pp. 13–20.
- Becker, E.W. (1994) Microalgae: Biotechnology and Microbiology, Cambridge University Press, New York.
- Krinsky, N.I. (1989) Antioxidant functions of carotenoids. Free Radical Biol. Med., 7 (6), 617–635.
- Pinto, E., Sigaud-Kutner, T.C.S., Leitao, M.A.S. et al. (2003) Heavy metal-induced oxidative stress in algae. J. Phycol., 39 (6), 1008–1018.
- Frank, H.A. and Cogdell, R.J. (1996) Carotenoids in photosynthesis. Photochem. Photobiol., 63 (3), 257–264.
- Krinsky, N.I. and Johnson, E.J. (2005) Carotenoid actions and their relation to health and disease. Mol. Aspects Med., 26 (6), 459–516.
-
Woodall, A.A., Britton, G., and Jackson, M.J. (1997) Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: relationship between carotenoid structure and protective ability. Biochim. Biophys. Acta, 1336 (3), 575–586.
10.1016/S0304-4165(97)00007-X Google Scholar
- Abdel Hameed, M.S. (2007) Effect of algal density in bead, bead size and bead concentrations on wastewater nutrient removal. Afr. J. Biotechnol., 6 (10), 1185–1191.
- Guerin, M., Huntley, M.E., and Olaizola, M. (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol., 21 (5), 210–216.
-
Mallick, N. (2004) Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. J. Plant Physiol., 161 (5), 591–597.
10.1078/0176-1617-01230 Google Scholar
- Apel, K. and Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. , 55, 373–399.
- Okamoto, O.K., Pinto, E., Latorre, L.R. et al. (2001) Antioxidant modulation in response to metal-induced oxidative stress in algal chloroplasts. Arch. Environ. Contam. Toxicol., 40 (1), 18–24.
- Demmig-Adams, B. and Adams, W.W. (1992) Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol., 43, 599–626.
- Noctor, G. and Foyer, C.H. (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 249–279.
- Takeda, T., Yokota, A., and Shigeoka, S. (1995) Resistance of photosynthesis to hydrogen peroxide in algae. Plant Cell Physiol., 36 (6), 1089–1095.
- Dat, J.F., Foyer, C.H., and Scott, I.M. (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol., 118 (4), 1455–1461.
-
Pedrajas, J.R., Peinado, J., and Lopezbarea, J. (1993) Purification of Cu, Zn superoxide dismutase isoenzymes from fish liver: appearance of new isoforms as a consequence of pollution. Free Radical Res. Commun., 19 (1), 29–41.
10.3109/10715769309056496 Google Scholar
- Thomas, D.J., Thomas, J.B., Prier, S.D. et al. (1999) Iron superoxide dismutase protects against chilling damage in the cyanobacterium Synechococcus species PCC7942. Plant Physiol., 120 (1), 275–282.
-
Vaquero, I., Ruiz-Dominguez, M.C., Marquez, M.
et al. (2012) Cu-mediated biomass productivity enhancement and lutein enrichment of the novel microalga Coccomyxa onubensis
. Process Biochem., 47 (5), 694–700.
10.1016/j.procbio.2012.01.016 Google Scholar
- Kobayashi, M., Kakizono, T., and Nagai, S. (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis . Appl. Environ. Microbiol., 59 (3), 867–873.
- Bhosale, P. (2004) Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbiol. Biotechnol., 63 (4), 351–361.
-
Mulders, K.M., Weesepoel, Y., Lamers, P.
et al. (2013) Growth and pigment accumulation in nutrient-depleted Isochrysis aff. galbana T-ISO. J. Appl. Phycol., 25 (5), 1421–1430.
10.1007/s10811-012-9954-6 Google Scholar
-
Lamers, P.P., Janssen, M., De Vos, R.C.H.
et al. (2012) Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J. Biotechnol., 162 (1), 21–27.
10.1016/j.jbiotec.2012.04.018 Google Scholar
- Boussiba, S., Fan, L., and Vonshak, A. (1992) Enhancement and determination of astaxanthin accumulation in the green alga Haematococcus pluvialis . Methods Enzymol., 213, 386–391.
- Del Campo, J.A., Moreno, J., Rodriguez, H. et al. (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J. Biotechnol., 76 (1), 51–59.
-
Orset, S. and Young, A.J. (1999) Low-temperature-induced synthesis of alpha-carotene in the microalga Dunaliella salina (Chlorophyta). J. Phycol., 35 (3), 520–527.
10.1046/j.1529-8817.1999.3530520.x Google Scholar
-
Garbayo, I., Cuaresma, M., Vilchez, C.
et al. (2008) Effect of abiotic stress on the production of lutein and beta-carotene by Chlamydomonas acidophila
. Process Biochem., 43 (10), 1158–1161.
10.1016/j.procbio.2008.06.012 Google Scholar
- Ben-Amotz, A. and Avron, M. (1983) Accumulation of metabolites by halotolerant algae and its industrial potential. Annu. Rev. Microbiol., 37, 95–119.
- Sánchez, J.F., Fernández-Sevilla, J.M., Acién, F.G. et al. (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl. Microbiol. Biotechnol., 79 (5), 719–729.
- Margalith, P.Z. (1999) Production of ketocarotenoids by microalgae. Appl. Microbiol. Biotechnol., 51 (4), 431–438.
- Schoefs, B., Rmiki, N.E., Rachadi, J. et al. (2001) Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids. FEBS Lett., 500 (3), 125–128.
- Masojidek, J. and Torzillo, G. (2008) Mass cultivation of freshwater microalgae, in Ecological Engineering (eds S.E. Jørgensen and B.D. Fath), Encyclopedia of Ecology, Elsevier, Oxford, pp. 2226–2235.
- Cuaresma, M., Janssen, M., Vilchez, C. et al. (2011) Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresour. Technol., 102 (8), 5129–5137.
- Melis, A. (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci., 177 (4), 272–280.
- Bohne, F. and Linden, H. (2002) Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii . Biochim. Biophys. Acta, 1579 (1), 26–34.
- Masojidek, J., Papacek, S., Sergejevova, M. et al. (2003) A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: basic design and performance. J. Appl. Phycol., 15 (2–3), 239–248.
- Cuaresma, M., Janssen, M., Vilchez, C. et al. (2009) Productivity of Chlorella sorokiniana in a Short Light-Path (SLP) panel photobioreactor under high irradiance. Biotechnol. Bioeng., 104 (2), 352–359.
- Geider, R.J. and Osborne, B.A. (1986) Light absorbtion, photosynthesis and growth of Nannochloris atomus in nutrient saturated cultures. Mar. Biol., 93 (3), 351–360.
- Geider, R.J., Osborne, B.A., and Raven, J.A. (1985) Light dependence of growth and photosynthesis in Phaeodactylum tricornutum (Bacillarophyceae). J. Phycol., 21 (4), 609–619.
- Bouterfas, R., Belkoura, M., and Dauta, A. (2002) Light and temperature effects on the growth rate of three freshwater algae isolated from a eutrophic lake. Hydrobiologia, 489 (1–3), 207–217.
- Pal, D., Khozin-Goldberg, I., Cohen, Z. et al. (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl. Microbiol. Biotechnol., 90 (4), 1429–1441.
- Solovchenko, A.E., Khozin-Goldberg, I., Didi-Cohen, S. et al. (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa . J. Appl. Phycol., 20 (3), 245–251.
-
Britton, G., Liaaen-Jensen, S., and Pfander, H. (2004) Carotenoids, Birkhäuser Basel, Berlin.
10.1007/978-3-0348-7836-4 Google Scholar
-
Couso, I., Vila, M., Vigara, J.
et al. (2012) Synthesis of carotenoids and regulation of the carotenoid biosynthesis pathway in response to high light stress in the unicellular microalga Chlamydomonas reinhardtii
. Eur. J. Phycol., 47 (3), 223–232.
10.1080/09670262.2012.692816 Google Scholar
-
Mulders, K.J.M., Weesepoel, Y., Bodenes, P.
et al. (2015) Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study. J. Appl. Phycol., 27 (1), 125–140.
10.1007/s10811-014-0333-3 Google Scholar
- Liaaen-Jensen, S. and Egeland, E.S. (1999) Microalgal carotenoids, in Chemicals from Microalgae (ed. Z. Cohen), CRC Press, Boca Raton, Florida, pp. 145–172.
- Huerlimann, R., de Nys, R., and Heimann, K. (2010) Growth, lipid content, productivity and fatty acid composition of tropical microalgae for scale-up production. Biotechnol. Bioeng., 107 (2), 245–257.
- von Alvensleben, N., Stookey, K., Magnusson, M. et al. (2013) Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica . PLoS One, 8 (5), e63569.
- Geider, R.J., Macintyre, H.L., Graziano, L.M. et al. (1998) Responses of the photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and phosphorus limitation. Eur. J. Phycol., 33 (4), 315–332.
- Conner, S.D. and Schmid, S.L. (2003) Regulated portals of entry into the cell. Nature, 422 (6927), 37–44.
- Zalups, R.K. and Ahmad, S. (2003) Molecular handling of cadmium in transporting epithelia. Toxicol. Appl. Pharmacol., 186 (3), 163–188.
- Boussiba, S. (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol. Plant., 108 (2), 111–117.
- Ip, P.-F. and Chen, F. (2005) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem., 40 (11), 3491–3496.
- Fan, L., Vonshak, A., Zarka, A. et al. (1998) Does astaxanthin protect Haematococcus against light damage? Z. Naturforsch. C, 53 (1–2), 93–100.
-
Rise, M., Cohen, E., Vishkautsan, M.
et al. (1994) Accumulation of secondary carotenoids in Chlorella zofingiensis
. J. Plant Physiol., 144 (3), 287–292.
10.1016/S0176-1617(11)81189-2 Google Scholar
- Shaish, A., Avron, M., Pick, U. et al. (1993) Are active oxygen species involved in induction of beta-carotene in Dunaliella bardawil . Planta, 190 (3), 363–368.
-
Conte, V. and Floris, B. (2011) Vanadium and molybdenum peroxides: synthesis and catalytic activity in oxidation reactions. Dalton Trans., 40 (7), 1419–1436.
10.1039/C0DT00706D Google Scholar
- Stohs, S.J. and Bagchi, D. (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol. Med., 18 (2), 321–336.
- Kehrer, J.P. (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology, 149 (1), 43–50.
- Haber, F. and Weiss, J. (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. London, Ser. A, 147 (861), 332–351.
- Wei, D., Chen, F., Chen, G. et al. (2008) Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Sci. China C Life Sci., 51 (12), 1088–1093.
- Okamoto, O.K., Asano, C.S., Aidar, E. et al. (1996) Effects of cadmium on growth and superoxide dismutase activity of the marine microalga Tetraselmis gracilis (Prasinophyceae). J. Phycol., 32 (1), 74–79.
- Sakaguchi, T., Nakajima, A., and Horikoshi, T. (1981) Studies on the accumulation of heavy metal elements in biological systems. 18. Accumulation of molybdenum by green microalgae. Eur. J. Appl. Microbiol. Biotechnol., 12 (2), 84–89.
- Tanaka, T., Shnimizu, M., and Moriwaki, H. (2012) Cancer chemoprevention by carotenoids. Molecules, 17 (3), 3202–3242.
- Guedes, A.C., Amaro, H.M., and Malcata, F.X. (2011) Microalgae as sources of carotenoids. Mar. Drugs, 9 (4), 625–644.
- Murthy, K.N.C., Vanitha, A., Rajesha, J. et al. (2005) In vivo antioxidant activity of carotenoids from Dunaliella salina – a green microalga. Life Sci., 76 (12), 1381–1390.
- Spolaore, P., Joannis-Cassan, C., Duran, E. et al. (2006) Commercial applications of microalgae. J. Biosci. Bioeng., 101 (2), 87–96.
-
Hughes, D.A., Wright, A.J.A., Finglas, P.M.
et al. (1997) The effect of beta-carotene supplementation on the immune function of blood monocytes from healthy male nonsmokers. J. Lab. Clin. Med., 129 (3), 309–317.
10.1016/S0022-2143(97)90179-7 Google Scholar
- Sies, H. and Stahl, W. (1997) Carotenoids and intercellular communication via gap junctions. Int. J. Vitamin Nutr. Res., 67 (5), 364–367.
- UBIC-Consulting (2014) The World β-Carotene Market, https://www.yumpu.com/en/document/fullscreen/27426820/the-world-beta-carotene-market-ubic-consulting (17 January 2018).
- Del Campo, J.A., Rodriguez, H., Moreno, J. et al. (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl. Microbiol. Biotechnol., 64 (6), 848–854.
-
Pirastru, L., Darwish, M., Chu, F.L.
et al. (2012) Carotenoid production and change of photosynthetic functions in Scenedesmus sp. exposed to nitrogen limitation and acetate treatment. J. Appl. Phycol., 24 (1), 117–124.
10.1007/s10811-011-9657-4 Google Scholar
- Chen, H. and Jiang, J.G. (2009) Osmotic responses of Dunaliella to the changes of salinity. J. Cell. Physiol., 219 (2), 251–258.
- Garcia-Gonzalez, M., Moreno, J., Manzano, J.C. et al. (2005) Production of Dunaliella salina biomass rich in 9-cis-beta-carotene and lutein in a closed tubular photobioreactor. J. Biotechnol., 115 (1), 81–90.
- Macias-Sanchez, M.D., Mantell, C., Rodriguez, M. et al. (2005) Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana . J. Food Eng., 66 (2), 245–251.
- Macias-Sanchez, M.D., Fernandez-Sevilla, J.M., Fernandez, F.G.A. et al. (2010) Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis . Food Chem., 123 (3), 928–935.
- Li, H.B., Fan, K.W., and Chen, F. (2006) Isolation and purification of canthaxanthin from the microalga Chlorella zofingiensis by high-speed counter-current chromatography. J. Sep. Sci., 29 (5), 699–703.
- Yuan, J.P., Chen, F., Liu, X. et al. (2002) Carotenoid composition in the green microalga Chlorococcum . Food Chem., 76 (3), 319–325.
-
Choubert, G. and Heinrich, O. (1993) Carotenoid pigments of the green alga Haematococcus pluvialis: assay on rainbow trout Oncorhyncus mykiss, pigmentation in comparison with synthetic astaxanthin and canthaxanthin. Aquaculture, 112 (2–3), 217–226.
10.1016/0044-8486(93)90447-7 Google Scholar
- Lubian, L.M., Montero, O., Moreno-Garrido, I. et al. (2000) Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J. Appl. Phycol., 12 (3–5), 249–255.
- de la Vega, M., Diaz, E., Vila, M. et al. (2011) Isolation of a new strain of Picochlorum sp. and characterization of its potential biotechnological applications. Biotechnol. Progr., 27 (6), 1535–1543.
- Del Campo, J.A., Rodriguez, H., Moreno, J. et al. (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J. Biotechnol., 85 (3), 289–295.
- Pasquet, V., Morisset, P., Ihammouine, S. et al. (2011) Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Mar. Drugs, 9 (5), 819–831.
- Soontornchaiboon, W., Joo, S.S., and Kim, S.M. (2012) Anti-inflammatory effects of violaxanthin isolated from microalga Chlorella ellipsoidea in RAW 264.7 macrophages. Biol. Pharm. Bull., 35 (7), 1137–1144.
- Koo, S.Y., Cha, K.H., Song, D.G. et al. (2012) Optimization of pressurized liquid extraction of zeaxanthin from Chlorella ellipsoidea . J. Appl. Phycol., 24 (4), 725–730.
- Liau, B.C., Hong, S.E., Chang, L.P. et al. (2011) Separation of sight-protecting zeaxanthin from Nannochloropsis oculata by using supercritical fluids extraction coupled with elution chromatography. Sep. Purif. Technol., 78 (1), 1–8.
- Chen, F., Li, H.B., Wong, R.N.S. et al. (2005) Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-current chromatography. J. Chromatogr. A, 1064 (2), 183–186.
- Del Campo, J.A., Garcia-Gonzalez, M., and Guerrero, M.G. (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl. Microbiol. Biotechnol., 74 (6), 1163–1174.
-
Fassett, R.G. and Coombes, J.S. (2011) Astaxanthin: a potential therapeutic agent in cardiovascular disease. Mar. Drugs, 9 (3), 447–465.
10.3390/md9030447 Google Scholar
- Cunningham, F.X. and Gantt, E. (2011) Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis . Plant Cell, 23 (8), 3055–3069.
-
Prieto, A., Canavate, J.P., and Garcia-Gonzalez, M. (2011) Assessment of carotenoid production by Dunaliella salina in different culture systems and operation regimes. J. Biotechnol., 151 (2), 180–185.
10.1016/j.jbiotec.2010.11.011 Google Scholar
- Liu, J., Huang, J.C., Jiang, Y. et al. (2012) Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis . Bioresour. Technol., 107, 393–398.
- Orosa, M., Valero, J.F., Herrero, C. et al. (2001) Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnol. Lett., 23 (13), 1079–1085.
- Zhang, D.H. and Lee, Y.K. (2001) Two-step process for ketocarotenoid production by a green alga, Chlorococcum sp. strain MA-1. Appl. Microbiol. Biotechnol., 55 (5), 537–540.
- Ip, P.F. and Chen, F. (2005) Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem., 40 (2), 733–738.
- Boussiba, S., Bing, W., Yuan, J.P. et al. (1999) Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses. Biotechnol. Lett., 21 (7), 601–604.
- Li, J., Zhu, D.L., Niu, J.F. et al. (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis . Biotechnol. Adv., 29 (6), 568–574.
-
Imamoglu, E., Dalay, M.C., and Sukan, F.V. (2009) Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis
. New Biotechnol., 26 (3–4), 199–204.
10.1016/j.nbt.2009.08.007 Google Scholar
- Garbayo, I., Torronteras, R., Forjan, E. et al. (2012) Identification and physiological aspects of a novel carotenoid-enriched, metal-resistant microalga isolated from an acidic river in Huelva, Spain. J. Phycol., 48 (3), 607–614.
- Blanco, A.M., Moreno, J., Del Campo, J.A. et al. (2007) Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl. Microbiol. Biotechnol., 73 (6), 1259–1266.
- Granado-Lorencio, F., Herrero-Barbudo, C., Acién-Fernández, G. et al. (2009) In vitro bioaccessibility of lutein and zeaxanthin from the microalgae Scenedesmus almeriensis . Food Chem., 114 (2), 747–752.
-
Vecchi, M. and Mueller, R.K. (1979) Separation of 3S 3'S astaxanthin 3R 3'R astaxanthin and 3S 3'R astaxanthin via levo camphanic acid esters. J. High Resolut. Chromatogr. Chromatogr. Commun, 2 (4), 195–196.
10.1002/jhrc.1240020411 Google Scholar
- Johnson, E.A. and An, G.H. (1991) Astaxanthin from microbial sources. Crit. Rev. Biotechnol., 11 (4), 297–326.
- Lorenz, R.T. and Cysewski, G.R. (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol., 18 (4), 160–167.
-
Grewe, C., Menge, S., and Griehl, C. (2007) Enantioselective separation of all-E-astaxanthin and its determination in microbial sources. J. Chromatogr. A, 1166 (1–2), 97–100.
10.1016/j.chroma.2007.08.002 Google Scholar
- Hussein, G., Sankawa, U., Goto, H. et al. (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J. Nat. Prod., 69 (3), 443–449.
-
Maoka, T., Nishino, A., Yasui, H.
et al. (2016) Anti-oxidative activity of mytiloxanthin, a metabolite of fucoxanthin in shellfish and tunicates. Mar. Drugs, 14 (5), 93. doi: 10.3390/md14050093
10.3390/md14050093 Google Scholar
- Guo, B., Liu, B., Yang, B. et al. (2016) Screening of diatom strains and characterization of Cyclotella cryptica as a potential fucoxanthin producer. Mar. Drugs, 14 (7), 125. doi: 110.3390/md14070125
-
Lin, J., Huang, L., Yu, J.
et al. (2016) Fucoxanthin, a marine carotenoid, reverses scopolamine-induced cognitive impairments in mice and inhibits acetylcholinesterase in vitro
. Mar. Drugs, 14 (4), 67. doi: 10.3390/md14040067
10.3390/md14040067 Google Scholar
-
Henke, N.A., Heider, S.A.E., Peters-Wendisch, P.
et al. (2016) Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum
. Mar. Drugs, 14 (7), 124. doi: 110.3390/md14070124
10.3390/md14070124 Google Scholar
- Jyonouchi, H., Sun, S.N., Tomita, Y. et al. (1995) Astaxanthin, a carotenoid without vitamin-A activity, augments antibody-responses in cultures including T-helper cell clones and suboptimal doses of antigen. J. Nutr., 125 (10), 2483–2492.
- Chew, B.P., Park, J.S., Wong, M.W. et al. (1999) A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo . Anticancer Res., 19 (3A), 1849–1853.
-
Hix, L.A., Lockwood, S.F., and Bertram, J.S. (2004) Upregulation of connexin 43 protein expression and increased gap junctional communication by water soluble disodium disuccinate astaxanthin derivatives. Cancer Lett., 211 (1), 25–37.
10.1016/j.canlet.2004.01.036 Google Scholar
- Gross, G.J. and Lockwood, S.F. (2004) Cardioprotection and myocardial salvage by a disodium disuccinate astaxanthin derivative (CardaxTM). Life Sci., 75 (2), 215–224.
- Maoka, T., Tokuda, H., Suzuki, N. et al. (2012) Anti-oxidative, anti-tumor-promoting, and anti-carcinogensis activities of nitroastaxanthin and nitrolutein, the reaction products of astaxanthin and lutein with peroxynitrite. Mar. Drugs, 10 (6), 1391–1399.
- Boussiba, S. and Vonshak, A. (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis . Plant Cell Physiol., 32 (7), 1077–1082.
-
Coral-Hinostroza, G.N. and Bjerkeng, B. (2002) Astaxanthin from the red crab langostilla (Pleuroncodes planipes): optical R/S isomers and fatty acid moieties of astaxanthin esters. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 133 (3), 437–444.
10.1016/S1096-4959(02)00186-0 Google Scholar
- Osterlie, M., Bjerkeng, B., and Liaaen-Jensen, S. (1999) Accumulation of astaxanthin all-E, 9Z and 13Z geometrical isomers and 3 and 3' RS optical isomers in rainbow trout (Oncorhynchus mykiss) is selective. J. Nutr., 129 (2), 391–398.
- Showalter, L.A., Weinman, S.A., Osterlie, M. et al. (2004) Plasma appearance and tissue accumulation of non-esterified, free astaxanthin in C57BL/6 mice after oral dosing of a disodium disuccinate diester of astaxanthin (HeptaxTM). Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 137 (3), 227–236.
- Granado, F., Olmedilla, B., and Blanco, I. (2003) Nutritional and clinical relevance of lutein in human health. Br. J. Nutr., 90 (3), 487–502.
-
Santocono, M., Zurria, M., Berrettini, M.
et al. (2006) Influence of astaxanthin, zeaxanthin and lutein on DNA damage and repair in UVA-irradiated cells. J. Photochem. Photobiol., B, 85 (3), 205–215.
10.1016/j.jphotobiol.2006.07.009 Google Scholar
- Maci, S. (2010) Lutein and zeaxanthin in the eye: from protection to performance. Agro Food Ind. Hi-Tech, 21 (5), 18–20.
- Snodderly, D.M. (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am. J. Clin. Nutr., 62 (6), 1448S–1461S.
- Arnal, E., Miranda, M., Almansa, I. et al. (2009) Lutein prevents cataract development and progression in diabetic rats. Graefes Arch. Clin. Exp. Ophthalmol., 247 (1), 115–120.
- Nishino, H., Murakoshi, M., Tokuda, H. et al. (2009) Cancer prevention by carotenoids. Arch. Biochem. Biophys., 483 (2), 165–168.
- Riccioni, G. (2009) Carotenoids and cardiovascular disease. Curr. Atherosclerosis Rep., 11 (6), 434–439.
-
Johnson-Down, L., Saudny-Unterberger, H., and Gray-Donald, K. (2002) Food habits of Canadians: lutein and lycopene intake in the Canadian population. J. Am. Dietetic Assoc., 102 (7), 988–991.
10.1016/S0002-8223(02)90226-9 Google Scholar
- Johnson, E.J., Maras, J.E., Rasmussen, H.M. et al. (2010) Intake of lutein and zeaxanthin differ with age, sex, and ethnicity. J. Am. Dietetic Assoc., 110 (9), 1357–1362.
- Kumar, R., Yu, W.L., Jiang, C.L., Shi, C.L. et al. (2010) Improvement of the isolation and purification of lutein from marigold flowers (Tagetes erecta L.) and its antioxidant activity. J. Food Process Eng, 33 (6), 1065–1078.
-
Piccaglia, R., Marotti, M., and Grandi, S. (1998) Lutein and lutein ester content in different types of Tagetes patula and T. erecta
. Ind. Crops Prod., 8 (1), 45–51.
10.1016/S0926-6690(97)10005-X Google Scholar
- Bosma, T.L., Dole, J.M., and Maness, N.O. (2003) Optimizing marigold (Tagetes erecta L.) petal and pigment yield. Crop Sci., 43 (6), 2118–2124.
-
Abd El-Baky, H.H., El Baz, F.K., and El-Baroty, G.S. (2009) Enhancement of antioxidant production in Spirulina platensis under oxidative stress. Acta Physiol. Plant., 31 (3), 623–631.
10.1007/s11738-009-0273-8 Google Scholar
- Jin, E.S., Feth, B., and Melis, A. (2003) A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions. Biotechnol. Bioeng., 81 (1), 115–124.
- Sajilata, M.G., Singhal, R.S., and Kamat, M.Y. (2008) The carotenoid pigment zeaxanthin: a review. Compr. Rev. Food Sci. Food Saf., 7 (1), 29–49.
- Li, X.-R., Tian, G.-Q., Shen, H.-J. et al. (2015) Metabolic engineering of Escherichia coli to produce zeaxanthin. J. Ind. Microbiol. Biotechnol., 42 (4), 627–636.
- Miki, W. (1991) Biological functions and activities of animal carotenoids. Pure Appl. Chem., 63 (1), 141–146.
- Shimidzu, N., Goto, M., and Miki, W. (1996) Carotenoids as singlet oxygen quenchers in marine organisms. Fish. Sci., 62 (1), 134–137.
- Woodall, A.A., Lee, S.W.-M., Weesie, R.J. et al. (1997) Oxidation of carotenoids by free radicals: relationship between structure and reactivity. Biochim. Biophys. Acta, 1336 (1), 33–42.
- Beutner, S., Bloedorn, B., Frixel, S. et al. (2001) Quantitative assessment of antioxidant properties of natural colorants and phytochemicals: carotenoids, flavonoids, phenols and indigoids. The role of ss-carotene in antioxidant functions. J. Sci. Food Agric., 81 (6), 559–568.
- León, R., Couso, I., and Fernández, E. (2007) Metabolic engineering of ketocarotenoids biosynthesis in the unicellular microalga Chlamydomonas reinhardtii . J. Biotechnol., 130 (2), 143–152.
-
Berman, J., Zorrilla-López, U., Farré, G.
et al. (2015) Nutritionally important carotenoids as consumer products. Phytochem. Rev., 14 (5), 727–743.
10.1007/s11101-014-9373-1 Google Scholar
-
Ribeiro, B., Barreto, D., and Coelho, M. (2011) Technological aspects of β-carotene production. Food Bioprocess Technol., 4 (5), 693–701.
10.1007/s11947-011-0545-3 Google Scholar
- Capelli, B., Bagchi, D., and Cysewski, G. (2013) Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods, 12 (4), 145–152.
-
Régnier, P., Bastias, J., Rodriguez-Ruiz, V.
et al. (2015) Astaxanthin from Haematococcus pluvialis prevents oxidative stress on human endothelial cells without toxicity. Mar. Drugs, 13 (5), 2857–2874.
10.3390/md13052857 Google Scholar
- Guedes, A.C., Amaro, H.M., and Malcata, F.X. (2011) Microalgae as sources of high added value compounds: a brief review of recent work. Biotechnol. Progr., 27 (3), 597–613.
- BCC-Research (2011) The Global Market for Carotenoids, Food and Beverage, https://www.bccresearch.com/market-research/food-and-beverage/carotenoids-global-market-report-fod025e.html (23 August 2017).