Chitin of Poriferan Origin as a Unique Biological Material
Hermann Ehrlich
TU Bergakademie Freiberg, Inst. für Experimentelle Physik, Leipziger Str. 23, 09596 Freiberg, Germany
Search for more papers by this authorHermann Ehrlich
TU Bergakademie Freiberg, Inst. für Experimentelle Physik, Leipziger Str. 23, 09596 Freiberg, Germany
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorSummary
For a long time, chitin was not recognized as an integral part of certain sponge skeletons. The origin of this chitin is not entirely clear since the presence of chitin synthase genes in the genome of the corresponding sponges has not yet been studied in detail. The first observations of chitin-based scaffolds in Verongida sponge skeletons were recently reported by our group in 2007. Today, these three-dimensional nanostructured tube-form scaffolds have been characterized by a broad variety of modern bioanalytical and physicochemical techniques in order to determine their morphology, composition, and structure. These results are represented and critically discussed in this chapter. We succeeded in the discovery of a 505-million-year-old chitin in the basal demosponge Vauxia gracilenta and in the discovery of chitin in freshwater sponges such as Spongilla lacustris and Lubomirskia baikalensis. We have also isolated and characterized six new chitin synthase gene fragments from the freshwater sponges studied. The presence of chitin in both marine and freshwater sponges indicates that this important structural biopolymer was already present in their common ancestor. During the last few years, we succeed in developing a novel method for the production of three-dimensional cleaned chitin skeletons from dictyoceratid sponges and the use thereof for tissue engineering and stem cell research. Furthermore, for the first time, we proposed sponge chitin as a thermostable biological material for the development of next generation of nanostructured biocomposites using “extreme biomimetic conditions” via a hydrothermal synthesis route.
References
-
Roberts, G.A.F. (1992) Chitin Chemistry, 1st edn, MacMillian, London.
10.1007/978-1-349-11545-7 Google Scholar
- Boissière, J.C. (1967) Mémoires Société Botanique de France, Colloque sur les lichens et la symbiose Lichénique, Paris, pp. 141–150.
- Rudall, K. and Kenchington, W. (1973) The chitin system. Biol. Rev., 49, 597–636.
- Muzzarelli, R.A.A. (1977) Chitin, Pergamon Press, Oxford.
- Jeuniaux, C. (1963) Chitine et Chitinolyse, un chapitre de la biologie moleculaire, Masson, Paris, pp. 1–177.
- Jeuniaux, C. (1982) La chitine dans le règne animal, Société Zoologique de France, Institute Oceanographique.
- Wagner, G.P., Lo, J., Laine, R. et al. (1993) Chitin in the epidermal cuticle of vertebrate (Paralipophorys trigloides, Blenniidae, Teleostei). Experientia, 49, 317–319.
- Khor, E. (2001) Chitin: Fulfilling a Biomaterials Promise, 1st edn, Elsevier Science Ltd, Oxford.
- Peter, M.G. (2005) Chitin and Chitosan in Fungi, in Biopolymers Online (ed. A. Steinbüchel), John Wiley & Sons, Inc., Weinheim, pp. 123–132.
- Merzendorfer, H. (2006) Insect chitin synthases: a review. J. Comp. Physiol. B, 176, 1–15.
- Merzendorfer, H. (2011) The cellular basis of chitin synthesis in fungi and insects: common principles and differences. Eur. J. Cell Biol., 90, 759–769.
- Durkin, C.A., Mock, T., and Armbrust, E.V. (2009) Chitin in diatoms and its association with the cell wall. Eukaryot. Cell, 8, 1038–1050.
- Brunner, E., Richthammer, P., Ehrlich, H. et al. (2009) Chitin-based organic networks – an integral part of cell wall biosilica from the diatom Thalassiosira pseudonana . Angew. Chem. Int. Ed., 48, 9724–9727.
- Bo, M., Bavestrello, G., Kurek, D. et al. (2012) Isolation and identification of chitin in black coral Paranthipates larix (Anthozoa: Cnidaria). Int. J. Biol. Macromol., 51, 129–137.
- (a) Ehrlich, H. (2010) Biological Materials of Marine Origin. Invertebrates, Springer-Verlag;
10.1007/978-90-481-9130-7 Google Scholar(b) Ehrlich, H. (2010) Chitin and collagen as universal and alternative templates in biomineralization. Int. Geol. Rev., 52, 661–699.
- Wysokowski, M., Petrenko, I., Stelling, A.L. et al. (2015) Chitin as a versatile template for extreme biomimetics. Polymers, 7, 235–265.
- Tang, W.J., Fernandez, J.G., Sohn, J.J. et al. (2015) Chitin is endogenously produced in vertebrates. Curr. Biol., 25, 897–900.
- Zhu, K.Y., Merzendorfer, H., Zhang, W. et al. (2016) Biosynthesis, turnover, and functions of chitin in insects. Annu. Rev. Entomol., 61, 177–196.
- Leblanc, K., Arístegui, J., Armand, L. et al. (2012) A global diatom database – abundance, biovolume and biomass in the world ocean. Earth Syst. Sci. Data, 4, 149–165.
- Atkinson, A., Siegel, V., Pakhomov, E.A. et al. (2009) A re-appraisal of the total biomass and annual production of Antarctic krill. Deep-Sea Res. Part A, 56, 727–740.
- Ehrlich, H. (2013) Biomimetic potential of chitin-based composite biomaterials of poriferan origin, in Biomimetic biomaterials: Structure and Applications (ed. A.J. Ruys), Woodhead Publishing, pp. 47–67.
- Anitha, A., Sowmya, S., Sudheesh Kumar, P.T. et al. (2014) Chitin and chitosan in selected biomedical applications. Prog. Polym. Sci., 39, 1644–1667.
- Azuma, K., Ifuku, S., Osaki, T. et al. (2014) Preparation and biomedical applications of chitin and chitosan nanofibers. J. Biomed. Nanotechnol., 10, 2891–2920.
- Azuma, K., Izumi, R., Osaki, T. et al. (2015) Chitin, chitosan, and its derivatives for wound healing: old and new materials. J. Funct. Biomater., 6, 104–142.
- Badwan, A.A., Rashid, I., Omari, M.M. et al. (2015) Chitin and chitosan as direct compression excipients in pharmaceutical applications. Mar. Drugs, 13, 1519–1547.
- Younes, I. and Rinaudo, M. (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs, 13, 1133–1174.
- Patrulea, V., Ostafe, V., Borchard, G. et al. (2015) Chitosan as a starting material for wound healing applications. Eur. J. Pharm. Biopharm., 97 (Pt B), 417–426.
- Logith Kumar, R., Keshav Narayan, A., Dhivya, S. et al. (2016) A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym., 151, 172–188.
- Singh, N., Chen, J., Koziol, K.K. et al. (2016) Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth. Nanoscale, 8, 8288–8299.
- Karaki, N., Aljawish, A., Humeau, C. et al. (2016) Enzymatic modification of polysaccharides: mechanisms, properties, and potential applications: a review. Enzyme Microb. Technol., 90, 1–18.
- Periayah, M.H., Halim, A.S., and Saad, A.Z. (2016) Chitosan: a promising marine polysaccharide for biomedical research. Pharmacogn. Rev., 10, 39–42.
- Rodríguez-Vázquez, M., Vega-Ruiz, B., Ramos-Zúñiga, R. et al. (2016) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed. Res. Int., 2015, 821279. doi: 10.1155/2015/821279
- Usman, A., Zia, K.M., Zuber, M. et al. (2016) Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. Int. J. Biol. Macromol., 86, 630–645.
- Nichols, S. and Wörheide, G. (2005) Sponges: new views of old animals. Integr. Comp. Biol., 45 (2), 333–334.
- Gazave, E., Lapébie, P., Ereskovsky, A.V. et al. (2012) No longer Demospongiae: Homoscleromorpha formal nomination as a fourth class of Porifera. Hydrobiologia, 687, 3–10.
- Ehrlich, H., Maldonado, M., Spindler, K.-D. et al. (2007) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera). J. Exp. Zool. (Mol. Dev. Evol.), 308B, 347–356.
- Ehrlich, H., Krautter, M., Hanke, T. et al. (2007) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J. Exp. Zool. (Mol. Dev. Evol.), 308B, 473–483.
- Zakrzewski, A.C., Weigert, A., Helm, C. et al. (2014) Early divergence, broad distribution, and high diversity of animal chitin synthases. Genome Biol. Evol., 6, 316–325.
- Ehrlich, H., Rigby, J.K., Botting, J. et al. (2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta . Nat. Sci. Rep., 3, 3497.
- Srivastava, M., Simakov, O., Chapman, J. et al. (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature, 466, 720–727.
-
Ehrlich, H., Kaluzhnaya, O.V., Tsurkan, M.V.
et al. (2013) First report on chitinous holdfast in sponges (Porifera). Proc. R. Soc. London, Ser. B, 280, 20130339.
10.1098/rspb.2013.0339 Google Scholar
- Ehrlich, H., Bazhenov, V., Meschke, S. et al. (2016) Marine Invertebrates of Boka Kotorska Bay Unique Sources for Bioinspired Materials Science, in: The Boka Kotorska Bay Environment, Series: The Handbook of Environmental Chemistry (eds A. Joksimovic et al.) Springer-Verlag, Berlin Heidelberg, pp. 313–334.
- Ehrlich, H., Maldonado, M., Parker, A.R. et al. (2016) Supercontinuum generation in naturally occurring glass sponges spicules. Adv. Opt. Mater. doi: 10.1002/adom.201600454
- Dauby, P. and Jeuniaux, C. (1986) Origine exogène de la chitine décelée chez les Spongiaires. Cah. Biol. Mar., 28, 121–129.
-
Ehrlich, H., Kaluzhnaya, O., Brunner, E.
et al. (2013) Identification and first insights into the structure and biosynthesis of chitin from the freshwater sponge Spongilla lacustris
. J. Struct. Biol., 183, 474–483.
10.1016/j.jsb.2013.06.015 Google Scholar
- Schleuter, D., Günther, A., Paasch, S. et al. (2013) Chitin-based renewable materials from marine sponges for uranium adsorption. Carbohydr. Polym., 92, 712–718.
- Maldonado, M. (2009) Embryonic development of verongid demosponges supports the independent acquisition of sponging skeletons as an alternative to the siliceous skeleton of sponges. Biol. J. Linn. Soc., 97, 427–447.
- Erpenbeck, D., Sutcliffe, P., Cook Sde, C. et al. (2012) Horny sponges and their affairs: on the phylogenetic relationships of keratose sponges. Mol. Phylogenet. Evol., 63, 809–816.
- Ehrlich, H., Simon, P., Carrillo-Cabrera, W. et al. (2010) Insights into chemistry of biological materials: newly discovered silica-aragonite-chitin biocomposites in demosponges. Chem. Mater., 22, 1462–1471.
- Bergquist, P.R. and Cook, S.D.C. (2002) Family Aplysinidae Carter, 1875, in Systema Porifera: A Guide to the Classification of Sponges, vol. 1 (eds J.N.A. Hooper and R.W.M. Soest), Kluwer Academic/Plenum, New York, p. 1082–1085.
- Bergquist, P.R. and Kelly-Borges, M. (1995) Systematics and biogeography of the genus Ianthella (Demospongiae: Verongida: Ianthellida) in the South-West Pacific. Beagle, Rec. North. Territ. Musem Arts Sci., 12, 151–176.
- Erwin, P.M. and Thacker, R.W. (2007) Phylogenetic analyses of marine sponges within the order Verongida: a comparison of morphological and molecular data. Inverteb. Biol., 126, 220–234.
-
Rohde, S. and Schupp, P.J. (2012) Growth and regeneration of the elephant ear sponge Ianthella basta (Porifera). Hydrobiologia, 687, 219. doi: 10.1007/s10750-011-0774-5
10.1007/s10750-011-0774-5 Google Scholar
- Uriz, M.J., Turon, X., Becerro, M.A. et al. (2003) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Microsc. Res. Tech., 62, 279–299.
- Ehrlich, H., Janussen, D., Simon, P. et al. (2008) Nanostructural organization of naturally occurring composites—Part II. Silica-chitin-based biocomposites. J. Nanomater., 2008, 1–8, Article ID 623838. doi: 10.1155/2008/670235
- Brunner, E., Ehrlich, H., Schupp, P. et al. (2009) Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta . J. Struct. Biol., 168, 539–547.
- Ehrlich, H., Ilan, M., Maldonado, M. et al. (2010) Three dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. Int. J. Biol. Macromol., 47, 132–140.
- Wysokowski, M., Bazhenov, V.V., Tsurkan, M.V. et al. (2013) Isolation and identification of chitin in three-dimensional skeleton of Aplysina fistularis marine sponge. Int. J. Biol. Macromol., 62, 94–100.
- Noishiki, Y., Takami, H., Nishiyama, Y. et al. (2003) Alkali induced conversion of β-chitin to α-chitin. Biomacromolecules, 4, 869–899.
- Cruz-Barraza, J.A., Carballo, J.L., Rocha-Olivares, A. et al. (2012) Integrative taxonomy and molecular phylogeny of genus Aplysina (Demospongiae: Verongida) from Mexican Pacific. PLoS One, 7, e42049.
-
Kunze, K., Niemann, H., Ueberlein, S.
et al. (2013) Brominated skeletal components of the marine demosponges, Aplysina cavernicola and Ianthella basta: analytical and biochemical investigations. Mar. Drugs, 11, 1271–1287.
10.3390/md11041271 Google Scholar
- Romano, P., Fabritius, H., and Raabe, D. (2007) The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. Acta Biomater., 3, 301–309.
- Freier, T., Montenegro, R., Shan Koh, H., and Shoichet, M.S. (2005) Chitin-based tubes for tissue engineering in the nervous system. Biomaterials, 26, 4624–4632.
- Muzzarelli, R.A. (2011) Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar. Drugs, 9, 1510–1533.
- Green, D., Walsh, D., Mann, S. et al. (2002) The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone, 30, 810–815.
- Green, D. (2008) Tissue bionics: examples in biomimetic tissue engineering. Biomed. Mater., 3, 034010.
- Pallela, R., Bojja, S., and Janapala, V.R. (2011) Biochemical and biophysical characterization of collagens of marine sponge, Ircinia fusca (Porifera: Demospongiae: Irciniidae). Int. J. Biol. Macromol., 49, 85–92.
- Pallela, R., Venkatesan, J., Janapala, V.R. et al. (2012) Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. J. Biomed. Mater. Res. Part A, 100, 486–495.
- Green, D.W., Lai, W.F., and Jung, H.S. (2014) Evolving marine biomimetics for regenerative dentistry. Mar. Drugs, 12, 2877–2912.
- Langer, R. and Vacanti, J.P. (1993) Tissue engineering. Science, 260, 920–926.
-
Green, D.W., Padula, M.P., Santos, J.
et al. (2013) A therapeutic potential for marine skeletal proteins in bone regeneration. Mar. Drugs, 11, 1203–1220.
10.3390/md11041203 Google Scholar
- R. Garrone (ed.) (1978) Phylogenesis of Connective Tissue, Karges Press, Basel.
- Freed, L.E., Marquis, J.C., Nohria, A. et al. (1993) Neocartilage formation in vitro and in vivo using cell cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res., 27, 11–19.
- Green, D., Howard, D., Yang, X. et al. (2003) Natural marine sponge fibre skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth and differentiation. Tissue Eng., 9, 1159–1166.
- Lin, Z., Solomon, K.L., Zhang, X. et al. (2011) In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. Int. J. Biol. Sci., 7, 968–977.
- Nandi, S.K., Kundu, B., Mahato, A. et al. (2015) In vitro and in vivo evaluation of the marine sponge skeleton as a bone mimicking biomaterial. Integr. Biol. (Camb), 7, 250–262.
- Boccardi, E., Belova, I.V., Murch, G.E. et al. (2015) Oxygen diffusion in marine-derived tissue engineering scaffolds. J. Mater. Sci. Mater. Med., 26, 1–9.
- Boccardi, E., Philippart, A., Juhasz-Bortuzzo, J.A. et al. (2015) Characterisation of bioglass based foams developed via replication of natural marine sponges. Adv. Appl. Ceram., 114 (supp1), S56–S62.
- Clarke, S.A., Choi, S.Y., McKeachie, M. et al. (2016) Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges. J. Mater. Sci. - Mater. Med., 27, 22. doi: 10.1007/s10856-015-5630-0
- Khor, E. (2002) Chitin: a biomaterial in waiting. Curr. Opin. Solid State Mater. Sci., 6, 313–317.
- Khor, E. and Lim, L.Y. (2003) Implantable applications of chitin and chitosan. Biomaterials, 24, 2339–2349.
- Morganti, P. and Morganti, G. (2008) Chitin nanofibrils for advanced cosmeceuticals. Clin. Dermatol., 26, 334–340.
- Abe, M., Takahashi, M., Tokura, S. et al. (2004) Cartilage-scaffold composites produced by bioresorbable beta-chitin sponge with cultured rabbit chondrocytes. Tissue Eng., 10, 585–594.
- Mi, F.-L., Shyu, S.-S., Wu, Y.-B. et al. (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials, 22, 165–173.
- Liu, X., Ma, L., Mao, Z. et al. (2011) Chitosan-based biomaterials for tissue repair and regeneration. Adv. Polym. Sci., 244, 81–128.
- Ikeda, T., Ikeda, K., Yamamoto, K. et al. (2014) Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold. BioMed Res. Int., 2014, 1–8. doi: 10.1155/2014/786892
- Suzuki, D., Takahashi, M., Abe, M. et al. (2008) Comparison of various mixtures of beta-chitin and chitosan as a scaffold for three-dimensional culture of rabbit chondrocytes. J. Mater. Sci. Med., 19, 1307–1315.
- Ehrlich, H., Steck, E., Ilan, M. et al. (2010) Three dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II. Biomimetic potential and applications. Int. J. Biol. Macromol., 47, 141–147.
- Steck, E., Burkhardt, M., Richter, W. et al. (2010) Discrimination between cells of murine and human origin in xenotransplants by specific genomic in situ hybridization. Xenotransplantation, 17, 153–159.
- Rogulska, O.Y., Mutsenko, V.V., Revenko, E.B. et al. (2013) Culture and differentiation of human adipose tissue mesenchymal stromal cells within carriers based on sea sponge chitin skeletons. Prob. Cryobiol. Cryomed., 23, 267–270.
- Rogulska, O.Y., Revenko, O.B., Petrenko, Y.O. et al. (2013) Prospects for the application of aplysinidae family marine sponge skeletons and mesenchymal stromal cells in tissue engineering. Biotechnol. Acta, 6, 115–121.
- Mutsenko, V.V., Rogulska, O.Y., Petrenko, Y.A. et al. (2016) Cryosensitivity of mesenchymal stromal cells cryopreserved within flat scaffolds derived from skeletons of marine sponges Ianthella basta . Prob. Cryobiol. Cryomed., 26, 13–23.
- Barros, A.A., Aroso, I.M., Silva, T.H. et al. (2013) Marine sponges – a new source of bioactive ceramics for tissue engineering and regenerative medicine applications. J. Tissue Eng. Regen. Med., 7, 46.
- Cunningham, E., Dunne, N., Clarke, S. et al. (2011) Comparative characterisation of 3-D hydroxyapatite scaffolds developed via replication of synthetic polymer foams and natural marine sponges. J. Tissue Sci. Eng., S1. doi: 10.4172/2157-7552.S1-001
- Wysokowski, M., Motylenko, M., Beyer, J. et al. (2015) Extreme biomimetic approach for developing novel chitin-GeO2 nanocomposites with photoluminescent properties. Nano Res., 8, 2288–2301.
- Wysokowski, M., Behm, T., Born, R. et al. (2013) Preparation of chitin-silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified stöber conditions. Mater. Sci. Eng., C, 33, 3935–3941.
-
Wysokowski, M., Piasecki, A., Bazhenov, V.V.
et al. (2013) Poriferan chitin as the scaffold for nanosilica deposition under hydrothermal synthesis conditions. J. Chitin. Chitosan Sci., 1, 26–33.
10.1166/jcc.2013.1009 Google Scholar
- Bazhenov, V.V., Wysokowski, M., Petrenko, I. et al. (2015) Preparation of monolithic silica–chitin composite under extreme biomimetic conditions. Int. J. Biol. Macromol., 76, 33–38.
-
Wysokowski, M., Materna, K., Walter, J.
et al. (2015) Solvothermal synthesis of hydrophobic chitin-polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Int. J. Biol. Macromol., 78, 224–229.
10.1016/j.ijbiomac.2015.04.014 Google Scholar
- Ehrlich, H., Simon, P., Motylenko, M. et al. (2013) Extreme biomimetics: formation of zirconium dioxide nanophase using chitinous scaffolds under hydrothermal conditions. J. Mater. Chem. B, 1, 5092–5099.
-
Wysokowski, M., Motylenko, M., Bazhenov, V.V.
et al. (2013) Poriferan chitin as a template for hydrothermal zirconia deposition. Front. Mater. Sci., 7, 248–260.
10.1007/s11706-013-0212-x Google Scholar
- Wysokowski, M., Motylenko, M., Walter, J. et al. (2014) Synthesis of nanostructured chitin–hematite composites under extreme biomimetic conditions. RSC Adv., 4, 61743–61752.
- Wysokowski, M., Petrenko, I., Motylenko, M. et al. (2015) Renewable chitin from marine sponge as a thermostable biological template for hydrothermal synthesis of hematite nanospheres using principles of extreme biomimetics. Bioinspired Mater., 1, 12–22.
- Barros, A.A., Aroso, I.M., Silva, T.H. et al. (2014) Surface modification of silica-based marine sponge bioceramics induce hydroxyapatite formation. Cryst. Growth Des., 14, 4545–4552.