Antimicrobial and Antibiofilm Molecules Produced by Marine Bacteria
Florie Desriac
Univ. Bretagne-Sud, EA 3884, LBCM, IUEM, rue de Saint Maudé, 56100 Lorient France
Univ. Brest, EA 3884, LBCM, IUEM, 2 rue de l'Université, 29000 Quimper France
These authors contributed equally to this work.Search for more papers by this authorSophie Rodrigues
Univ. Bretagne-Sud, EA 3884, LBCM, IUEM, rue de Saint Maudé, 56100 Lorient France
These authors contributed equally to this work.Search for more papers by this authorIbtissem Doghri
Univ. La Rochelle, LIENSs, UMR 7266 Université de La Rochelle-CNRS, Avenue Michel Crépeau, 17042 La Rochelle Cedex 01 France
Search for more papers by this authorSophie Sablé
Univ. La Rochelle, LIENSs, UMR 7266 Université de La Rochelle-CNRS, Avenue Michel Crépeau, 17042 La Rochelle Cedex 01 France
Search for more papers by this authorIsabelle Lanneluc
Univ. La Rochelle, LIENSs, UMR 7266 Université de La Rochelle-CNRS, Avenue Michel Crépeau, 17042 La Rochelle Cedex 01 France
Search for more papers by this authorYannick Fleury
Univ. Brest, EA 3884, LBCM, IUEM, 2 rue de l'Université, 29000 Quimper France
Search for more papers by this authorAlexis Bazire
Univ. Bretagne-Sud, EA 3884, LBCM, IUEM, rue de Saint Maudé, 56100 Lorient France
Search for more papers by this authorAlain Dufour
Univ. Bretagne-Sud, EA 3884, LBCM, IUEM, rue de Saint Maudé, 56100 Lorient France
Search for more papers by this authorFlorie Desriac
Univ. Bretagne-Sud, EA 3884, LBCM, IUEM, rue de Saint Maudé, 56100 Lorient France
Univ. Brest, EA 3884, LBCM, IUEM, 2 rue de l'Université, 29000 Quimper France
These authors contributed equally to this work.Search for more papers by this authorSophie Rodrigues
Univ. Bretagne-Sud, EA 3884, LBCM, IUEM, rue de Saint Maudé, 56100 Lorient France
These authors contributed equally to this work.Search for more papers by this authorIbtissem Doghri
Univ. La Rochelle, LIENSs, UMR 7266 Université de La Rochelle-CNRS, Avenue Michel Crépeau, 17042 La Rochelle Cedex 01 France
Search for more papers by this authorSophie Sablé
Univ. La Rochelle, LIENSs, UMR 7266 Université de La Rochelle-CNRS, Avenue Michel Crépeau, 17042 La Rochelle Cedex 01 France
Search for more papers by this authorIsabelle Lanneluc
Univ. La Rochelle, LIENSs, UMR 7266 Université de La Rochelle-CNRS, Avenue Michel Crépeau, 17042 La Rochelle Cedex 01 France
Search for more papers by this authorYannick Fleury
Univ. Brest, EA 3884, LBCM, IUEM, 2 rue de l'Université, 29000 Quimper France
Search for more papers by this authorAlexis Bazire
Univ. Bretagne-Sud, EA 3884, LBCM, IUEM, rue de Saint Maudé, 56100 Lorient France
Search for more papers by this authorAlain Dufour
Univ. Bretagne-Sud, EA 3884, LBCM, IUEM, rue de Saint Maudé, 56100 Lorient France
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorSummary
Marine environments, and especially marine bacteria, constitute a rich source of producers of novel bioactive natural products with biotechnological interests. Novel effective molecules against antibiotic-resistant bacteria and against bacterial biofilms are needed in a variety of fields. This chapter is therefore devoted to reviewing antimicrobial and antibiofilm compounds produced by marine bacteria. Several types of molecules are considered, more particularly the antimicrobial tropodithietic acid and the nucleoside antibiotic A201A, as well as the antibiofilm molecules of different natures. Finally, particular attention is paid to the antimicrobial enzymes AlpP and lysine-epsilon-oxidase (LodA). Complementary studies of these enzymes have led to basic discoveries on the biofilm lifestyle of the producer bacteria, in addition to opening up possible future applications in industry, aquaculture, and human health.
References
- Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H.G., and Prinsep, M.R. (2016) Marine natural products. Nat. Prod. Rep., 33, 382–431.
- Donlan, R.M. and Costerton, J.W. (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev., 15, 167–193.
- Mann, E.E. and Wozniak, D.J. (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol. Rev., 36, 893–916.
- Sauer, K., Camper, A.K., Ehrlich, G.D., Costerton, J.W., and Davies, D.G. (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol., 184, 1140–1154.
- Mai-Prochnow, A., Evans, F., Dalisay-Saludes, D., Stelzer, S., Egan, S., James, S., Webb, J.S., and Kjelleberg, S. (2004) Biofilm development and cell death in the marine bacterium Pseudoalteromonas tunicata . Appl. Environ. Microbiol., 70, 3232–3238.
- Webb, J.S., Lau, M., and Kjelleberg, S. (2004) Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J. Bacteriol., 186, 8066–8073.
- Simoes, M., Bennett, R.N., and Rosa, E.A.S. (2009) Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat. Prod. Rep., 26, 746–757.
- Mesaros, N., Nordmann, P., Plesiat, P., Roussel-Delvallez, M., Van Eldere, J., Glupczynski, Y., Van Laethem, Y.V., Jacobs, F., Lebecque, P., Malfroot, A., Tulkens, P.M., and Van Bambeke, F. (2007) Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin. Microbiol. Infect., 13, 560–578.
- Lanneluc, I., Langumier, M., Sabot, R., Jeannin, M., Refait, P., and Sablé, S. (2015) On the bacterial communities associated with the corrosion product layer during the early stages of marine corrosion of carbon steel. Int. Biodeterior. Biodegrad., 99, 55–65.
-
Azemar, F., Faÿ, F., Réhel, K., and Linossier, I. (2015) Development of hybrid antifouling paint. Prog. Org. Coat., 87, 10–19.
10.1016/j.porgcoat.2015.04.007 Google Scholar
- Donlan, R.M. (2009) Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol., 17, 66–72.
- Estrela, A.B., Heck, M.G., and Abraham, W.R. (2009) Novel approaches to control biofilm infections. Curr. Med. Chem., 16, 1512–1530.
-
Habbu, P., Warad, V., Shastri, R., Madagundi, S., and Kulkarni, V.H. (2016) Antimicrobial metabolites from marine microorganisms. Chin. J. Nat. Med., 14, 101–116.
10.1016/S1875-5364(16)60003-1 Google Scholar
- Mansson, M., Gram, L., and Larsen, T.O. (2011) Production of bioactive secondary metabolites by marine Vibrionaceae . Mar. Drugs, 9, 1440–1468.
- Crowley, S.P., O'Gara, F., O'Sullivan, O., Cotter, P.D., and Dobson, A.D. (2014) Marine Pseudovibrio sp. as a novel source of antimicrobials. Mar. Drugs, 12, 5916–5929.
- Manivasagan, P., Venkatesan, J., Sivakumar, K., and Kim, S.K. (2014) Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol. Res., 169, 262–278.
- Offret, C., Desriac, F., Le Chevalier, P., Mounier, J., Jégou, C., and Fleury, Y. (2016) Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: chemodiversity and ecological significance. Mar. Drugs, 14, 129.
- Desriac, F., Defer, D., Bourgougnon, N., Brillet, B., Le Chevalier, P., and Fleury, Y. (2010) Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Mar. Drugs, 8, 1153–1177.
- Desriac, F., Jégou, C., Balnois, E., Brillet, B., Le Chevalier, P., and Fleury, Y. (2013) Antimicrobial peptides from marine Proteobacteria . Mar. Drugs, 11, 3632–3660.
- Hoang, V.L.T. and Kim, S.K. (2013) Antimicrobial peptides from marine sources. Curr. Protein Pept. Sci., 14, 205–211.
- Qin, Z., Huang, S., Yu, Y., and Deng, H. (2013) Dithiolopyrrolone natural products: isolation, synthesis and biosynthesis. Mar. Drugs, 11, 3970–3997.
- Gao, J. and Hamann, M.T. (2011) Chemistry and biology of kahalalides. Chem. Rev., 111, 3208–3235.
- Amoutzias, G.D., Chaliotis, A., and Mossialos, D. (2016) Discovery strategies of bioactive compounds synthesized by nonribosomal peptide synthetases and type-I polyketide synthases derived from marine microbiomes. Mar. Drugs, 14, 80.
- Cane, D.E. and Ikeda, H. (2012) Exploration and mining of the bacterial terpenome. Acc. Chem. Res., 45, 463–472.
- Dávila-Céspedes, A., Hufendiek, P., Crüsemann, M., Schäberle, T.F., and König, G.M. (2016) Marine-derived myxobacteria of the suborder Nannocystineae: an underexplored source of structurally intriguing and biologically active metabolites. Beilstein J. Org. Chem., 12, 969–984.
- Gomez-Escribano, J.P., Alt, S., and Bibb, M.J. (2016) Next generation sequencing of Actinobacteria for the discovery of novel natural products. Mar. Drugs, 14, 78.
- Brinkhoff, T., Bach, G., Heidorn, T., Liang, L., Schlingloff, A., and Simon, M. (2004) Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl. Environ. Microbiol., 70, 2560–2565.
- Kintaka, K., Ono, H., Tsubotani, S., Harada, S., and Okazaki, H. (1984) Thiotropocin, a new sulfur-containing 7-membered-ring antibiotic produced by a Pseudomonas sp. J. Antibiot., 37, 1294–1300.
- Bruhn, J.B., Nielsen, K.F., Hjelm, M., Hansen, M., Bresciani, J., Schulz, S., and Gram, L. (2005) Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the Roseobacter clade. Appl. Environ. Microbiol., 71, 7263–7270.
- Rabe, P., Klapschinski, T.A., Brock, N.L., Citron, C.A., D'Alvise, P., Gram, L., and Dickschat, J.S. (2014) Synthesis and bioactivity of analogues of the marine antibiotic tropodithietic acid. Beilstein J. Org. Chem., 10, 1796–1801.
- Geng, H., Bruhn, J.B., Nielsen, K.F., Gram, L., and Belas, R. (2008) Genetic dissection of tropodithietic acid biosynthesis by marine Roseobacters. Appl. Environ. Microbiol., 74, 1535–1545.
- Berger, M., Brock, N.L., Liesegang, H., Dogs, M., Preuth, I., Simon, M., Dickschat, J.S., and Brinkhoff, T. (2012) Genetic analysis of the upper phenylacetate catabolic pathway in the production of tropodithietic acid by Phaeobacter gallaeciensis . Appl. Environ. Microbiol., 78, 3539–3551.
- Grotkjær, T., Bentzon-Tilia, M., D'Alvise, P., Dourala, N., Nielsen, K.F., and Gram, L. (2016) Isolation of TDA-producing Phaeobacter strains from sea bass larval rearing units and their probiotic effect against pathogenic Vibrio spp. in artemia cultures. Syst. Appl. Microbiol., 39, 180–188.
- Harrington, C., Reen, F., Mooij, M., Stewart, F., Chabot, J.B., Guerra, A., Glöckner, F., Nielsen, K.F., Gram, L., Dobson, A.D.W., Adams, C., and O'Gara, F. (2014) Characterisation of non-autoinducing tropodithietic acid (TDA) production from marine sponge Pseudovibrio species. Mar. Drugs, 12, 5960–5978.
- Porsby, C.H., Nielsen, K.F., and Gram, L. (2008) Phaeobacter and Ruegeria species of the Roseobacter clade colonize separate niches in a Danish turbot (Scophthalmus maximus)-rearing farm and antagonize Vibrio anguillarum under different growth conditions. Appl. Environ. Microbiol., 74, 7356–7364.
- D'Alvise, P.W., Phippen, C.B.W., Nielsen, K.F., and Gram, L. (2016) Influence of iron on production of the antibacterial compound tropodithietic acid and its noninhibitory analog in Phaeobacter inhibens . Appl. Environ. Microbiol., 82, 502–509.
- D'Alvise, P.W., Magdenoska, O., Melchiorsen, J., Nielsen, K.F., and Gram, L. (2014) Biofilm formation and antibiotic production in Ruegeria mobilis are influenced by intracellular concentrations of cyclic dimeric guanosinmonophosphate: c-di-GMP signalling in Ruegeria mobilis . Environ. Microbiol., 16, 1252–1266.
- Berger, M., Neumann, A., Schulz, S., Simon, M., and Brinkhoff, T. (2011) Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. J. Bacteriol., 193, 6576–6585.
- D'Alvise, P.W., Lillebø, S., Prol-Garcia, M.J., Wergeland, H.I., Nielsen, K.F., Bergh, Ø., and Gram, L. (2012) Phaeobacter gallaeciensis reduces Vibrio anguillarum in cultures of microalgae and rotifers, and prevents vibriosis in cod larvae. PLoS One, 7, e43996.
- Neu, A.K., Mansson, M., Gram, L., and Prol-Garcia, M.J. (2014) Toxicity of bioactive and probiotic marine bacteria and their secondary metabolites in Artemia sp. and Caenorhabditis elegans as eukaryotic model organisms. Appl. Environ. Microbiol., 80, 146–153.
- Porsby, C.H., Webber, M.A., Nielsen, K.F., Piddock, L.J.V., and Gram, L. (2011) Resistance and tolerance to tropodithietic acid, an antimicrobial in aquaculture, is hard to select. Antimicrob. Agents Chemther., 55, 1332–1337.
- Rasmussen, B.B., Grotkjær, T., D'Alvise, P.W., Yin, G., Zhang, F., Bunk, B., Spröer, C., Bentzon-Tilia, M., and Gram, L. (2016) Vibrio anguillarum is genetically and phenotypically unaffected by long-term continuous exposure to the antibacterial compound tropodithietic acid. Appl. Environ. Microbiol., 82, 4802–4810.
- Wichmann, H., Vocke, F., Brinkhoff, T., Simon, M., and Richter-Landsberg, C. (2015) Cytotoxic effects of tropodithietic acid on mammalian clonal cell lines of neuronal and glial origin. Mar. Drugs, 13, 7113–7123.
- Ensminger, P.W., and Hamill, R.L. (1979) Method of treating acne with antibiotic a201a. US Patent 4143141A.
- Kirst, H.A., Dorman, D.E., Occolowitz, J.L., Jones, N.D., Paschal, J.W., Hamill, R.L., and Szymanski, E.F. (1985) The structure of A201A, a novel nucleoside antibiotic. J. Antibiot., 38, 575–586.
- Zhu, Q., Li, J., Ma, J., Luo, M., Wang, B., Huang, H., Tian, X., Li, W., Zhang, S., Zhang, C., and Ju, J. (2012) Discovery and engineered overproduction of antimicrobial nucleoside antibiotic A201A from the deep-sea marine actinomycete Marinactinospora thermotolerans SCSIO 00652. Antimicrob. Agents Chemother., 56, 110–114.
- Nie, S., Li, W., and Yu, B. (2014) Total synthesis of nucleoside antibiotic A201A. J. Am. Chem. Soc., 136, 4157–4160.
- Barrasa, M.I., Tercero, J.A., and Jimenez, A. (1997) The aminonucleoside antibiotic A201A is inactivated by a phosphotransferase activity from Streptomyces capreolus NRRL 3817, the producing organism. Isolation and molecular characterization of the relevant encoding gene and its DNA flanking regions. Eur. J. Biochem., 245, 54–63.
- Polikanov, Y.S., Starosta, A.L., Juette, M.F., Altman, R.B., Terry, D.S., Lu, W., Burnett, B.J., Dinos, G., Reynolds, K.A., Blanchard, S.C., Steitz, T.A., and Wilson, D.N. (2015) Distinct tRNA accommodation intermediates observed on the ribosome with the antibiotics hygromycin A and A201A. Mol. Cell, 58, 832–844.
- Barrasa, M.I., Tercero, J.A., Lacalle, R.A., and Jimenez, A. (1995) The ard1 gene from Streptomyces capreolus encodes a polypeptide of the ABC-transporters superfamily which confers resistance to the aminonucleoside antibiotic A201A. Eur. J. Biochem., 228, 562–569.
- Bakkiyaraj, D. and Pandian, S.K. (2010) In vitro and in vivo antibiofilm activity of a coral associated actinomycete against drug resistant Staphylococcus aureus biofilms. Biofouling, 26, 711–717.
- Dheilly, A., Soum-Soutera, E., Klein, G.L., Bazire, A., Compere, C., Haras, D., and Dufour, A. (2010) Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3J6. Appl. Environ. Microbiol., 76, 3452–3461.
- Klein, G.L., Soum-Soutera, E., Guede, Z., Bazire, A., Compere, C., and Dufour, A. (2011) The anti-biofilm activity secreted by a marine Pseudoalteromonas strain. Biofouling, 27, 931–940.
- Nithya, C. and Pandian, S.K. (2010) The in vitro antibiofilm activity of selected marine bacterial culture supernatants against Vibrio spp. Arch. Microbiol., 192, 843–854.
- Nithya, C., Begum, M.F., and Pandian, S.K. (2010) Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1. Appl. Microbiol. Biotechnol., 88, 341–358.
- Nithya, C., Devi, M.G., and Pandian, S.K. (2011) A novel compound from the marine bacterium Bacillus pumilus S6-15 inhibits biofilm formation in Gram-positive and Gram-negative species. Biofouling, 27, 519–528.
- Nithyanand, P., Thenmozhi, R., Rathna, J., and Pandian, S.K. (2010) Inhibition of Streptococcus pyogenes biofilm formation by coral-associated actinomycetes. Curr. Microbiol., 60, 454–460.
- Thenmozhi, R., Nithyanand, P., Rathna, J., and Pandian, S.K. (2009) Antibiofilm activity of coral associated bacteria against different clinical M serotypes of Streptococcus pyogenes . FEMS Immunol. Med. Microbiol., 57, 284–294.
- You, J., Xue, X., Cao, L., Lu, X., Wang, J., Zhang, L., and Zhou, S. (2007) Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Appl. Microbiol. Biotechnol., 76, 1137–1144.
- Jiang, P., Li, J., Han, F., Duan, G., Lu, X., Gu, Y., and Yu, W. (2011) Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS One, 6, e18514.
- Brian-Jaisson, F., Molmeret, M., Fahs, A., Guentas-Dombrowsky, L., Culioli, G., Blache, Y., Cérantola, S., and Ortalo-Magné, A. (2016) Characterization and anti-biofilm activity of extracellular polymeric substances produced by the marine biofilm-forming bacterium Pseudoalteromonas ulvae strain TC14. Biofouling, 32, 547–560.
- Wu, S., Liu, G., Jin, W., Xiu, P., and Sun, C. (2016) Antibiofilm and anti-infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa . Front. Microbiol., 7, 102.
- Lee, K.J., Lee, M.A., Hwang, W., Park, H., and Lee, K.H. (2016) Deacylated lipopolysaccharides inhibit biofilm formation by Gram-negative bacteria. Biofouling, 32, 711–723.
- Kanmani, P., Satish Kumar, R., Yuvaraj, N., Paari, K.A., Pattukumar, V., and Arul, V. (2011) Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro . Bioresour. Technol., 102, 4827–4833.
- Kiran, G.S., Sabarathnam, B., and Selvin, J. (2010) Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei . FEMS Immunol. Med. Microbiol., 59, 432–438.
- Dusane, D.H., Pawar, S.V., Nancharaiah, Y.V., Venugopalan, V.P., Kumar, A.R., and Zinjarde, S.S. (2011) Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens . Biofouling, 27, 645–654.
- Padmavathi, A.R. and Pandian, S.K. (2014) Antibiofilm activity of biosurfactant producing coral associated bacteria isolated from Gulf of Mannar. Indian J. Microbiol., 54, 376–382.
- Padmavathi, A.R., Abinaya, B., and Pandian, S.K. (2014) Phenol, 2,4-bis(1,1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens . Biofouling, 30, 1111–1122.
- Papa, R., Parrilli, E., Sannino, F., Barbato, G., Tutino, M.L., Artini, M., and Selan, L. (2013) Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. Res. Microbiol., 164, 450–456.
- Rodrigues, S., Paillard, C., Dufour, A., and Bazire, A. (2015) Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. 3J6 against Vibrio tapetis, the causative agent of brown ring disease. Probiotics Antimicrob. Proteins, 7, 45–51.
- Rendueles, O., Kaplan, J.B., and Ghigo, J.M. (2013) Antibiofilm polysaccharides. Environ. Microbiol., 15, 334–346.
- Senni, K., Pereira, J., Gueniche, F., Delbarre-Ladrat, C., Sinquin, C., Ratiskol, J., Godeau, G., Fischer, A.M., Helley, D., and Colliec-Jouault, S. (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar. Drugs, 9, 1664–1681.
- Kavita, K., Singh, V.K., Mishra, A., and Jha, B. (2014) Characterisation and anti-biofilm activity of extracellular polymeric substances from Oceanobacillus iheyensis . Carbohydr. Polym., 101, 29–35.
- Sayem, S., Manzo, E., Ciavatta, L., Tramice, A., Cordone, A., Zanfardino, A., De Felice, M., and Varcamonti, M. (2011) Antibiofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis . Microb. Cell Fact., 10, 74–85.
- Flemming, H.C. and Wingender, J. (2010) The biofilm matrix. Nat. Rev. Microbiol., 8, 623–633.
- Das, T. and Manefield, M. (2012) Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa . PLoS One, 7, e46718.
- Lüderitz, O., Freudenberg, M.A., Galanos, C., Lehmann, V., Rietschel, E.T., and Shaw, D.H. (1982) Lipopolysaccharides of Gram-negative bacteria. Curr. Top. Membr. Transp., 17, 79–151.
- Jacques, M. (1996) Role of lipo-oligosaccharides and lipopolysaccharides in bacterial adherence. Trends Microbiol., 4, 408–409.
- Qureshi, N., Takayama, K., and Ribi, E. (1982) Purification and structural determination of nontoxic lipid A obtained from the lipopolysaccharide of Salmonella typhimurium . J. Biol. Chem., 25, 11808–11815.
- Seid, R.C. Jr. and Sadof, J.C. (1981) Preparation and characterization of detoxified lipopolysaccharide-protein conjugates. J. Biol. Chem., 256, 7305–7310.
- Vuopio-Varkila, J., Nurminen, M., Pyhala, L., and Makela, P.H. (1988) Lipopolysaccharide-induced non-specific resistance to systemic Escherichia coli infection in mice. J. Med. Microbiol., 25, 197–203.
- Bendaoud, M., Vinogradov, E., Balashova, N.V., Kadouri, D.E., Kachlany, S.C., and Kaplan, J.B. (2011) Broad-spectrum biofilm inhibition by Kingella kingae exopolysaccharide. J. Bacteriol., 193, 3879–3886.
- Jackson, S.A., Borchert, E., O'Gara, F., and Dobson, A.D.W. (2015) Metagenomics for the discovery of novel biosurfactants of environmental interest from marine ecosystems. Curr. Opin. Biotechnol., 33, 176–182.
- Banat, I.M. (1995) Characteristics of biosurfactants and their use in pollution removal – state of art. Acta Biotechnol., 15, 251–267.
- Banat, I.M., Diaz De Rienzo, M.A., and Quinn, G.A. (2014) Microbial biofilms: biosurfactants as antibiofilm agents. Appl. Microbiol. Biotechnol., 98, 9915–9929.
- Rodrigues, L.R., Banat, I.M., Teixeira, J.A., and Oliveira, R. (2006) Biosurfactants: potential applications in medicine. J. Antimicrob. Chemother., 57, 609–618.
- Gandhimathi, R., Kiran, G.S., Hema, T.A., Selvin, J., Anandhi, S., Raviji, T.R., Shanmughapriya, T., and Baskar, T.B. (2009) Production and characterization of lipopeptide biosurfactant by a sponge associated marine actinomycetes Nocardiopsis alba MSA10. Bioproccess. Biosyst. Eng., 6, 825–835.
- Kiran, G.S., Hema, T.A., Gandhimathi, R., Selvin, J., Manilal, A., Sujith, S., and Natarajaseenivasan, K. (2009) Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf., B, 73, 250–256.
- Kiran, G.S., Thomas, T.A., Selvin, J., Sabarathnam, B., and Lipton, A.P. (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour. Technol., 101, 2389–2396.
- Gudiña, E.J., Teixeira, J.A., and Rodrigues, L.R. (2016) Biosurfactants produced by marine microorganisms with therapeutic applications. Mar. Drugs, 14, 38.
- Waters, C.M. and Bassler, B.L. (2005) Quorum-sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol., 21, 319–346.
- Dobretsov, S., Teplitski, M., and Paul, V. (2009) Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling, 25, 413–427.
- Labbate, M., Queck, S.Y., Koh, K.S., Rice, S.A., Givskov, M., and Kjelleberg, S. (2004) Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J. Bacteriol., 186, 692–698.
- Kalia, V.C. (2013) Quorum sensing inhibitors: an overview. Biotechnol. Adv., 31, 224–245.
- Brackman, G. and Coenye, T. (2015) Quorum sensing inhibitors as anti-biofilm agents. Curr. Pharm. Des., 21, 5–11.
- Golberg, K., Pavlov, V., Marks, R.S., and Kushmaro, A. (2013) Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling, 29, 669–682.
- Heydorn, A., Ersboll, B., Kato, J., Hentzer, M., Parsek, M.R., Tolker-Nielsen, T., Givskov, M., and Molin, S. (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl. Environ. Microbiol., 68, 2008–2017.
- Purevdorj, B., Costerton, J.W., and Stoodley, P. (2002) Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol., 68, 4457–4464.
- Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., and Greenberg, E.P. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280, 295–298.
- Bowman, J.P. (2007) Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas . Mar. Drugs, 5, 220–241.
- Parrilli, E., Papa, R., Carillo, S., Tilotta, M., Casilo, A., Sannino, F., Celini, A., Artini, M., Selan, L., Corsaro, M.M., and Tutino, M.L. (2015) Anti-biofilm activity of Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis biofilm: evidence of a signal molecule involvement? Int. J. Immunopathol. Pharmacol., 28, 104–113.
- Xu, L., Li, H.L., Vuong, C., Vadyvaloo, V., Wang, J., Yao, Y., Otto, M., and Gao, Q. (2006) Role of the LuxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis . Infect. Immun., 74, 488–496.
- Holmström, C., Rittschof, D., and Kjelleberg, S. (1992) Inhibition of settlement by larvae of Balanus amphitrite and Ciona intestinalis by a surface-colonizing marine bacterium. Appl. Environ. Microbiol., 58, 2111–2115.
- James, S.G., Holmström, C., and Kjelleberg, S. (1996) Purification and characterization of a novel antibacterial protein from the marine bacterium D2. Appl. Environ. Microbiol., 62, 2783–2788.
- Lucas-Elío, P., Hernandez, P., Sanchez-Amat, A., and Solano, F. (2005) Purification and partial characterization of marinocine, a new broad-spectrum antibacterial protein produced by Marinomonas mediterranea . Biochim. Biophys. Acta, 1721, 193–203.
- Lucas-Elío, P., Gómez, D., Solano, F., and Sanchez-Amat, A. (2006) The antimicrobial activity of marinocine, synthesized by Marinomonas mediterranea, is due to hydrogen peroxide generated by its lysine oxidase activity. J. Bacteriol., 188, 2493–2501.
- Gómez, D., Lucas-Elío, P., Sánchez-Amat, A., and Solano, F. (2006) A novel type of lysine oxidase: L-lysine-epsilon-oxidase. Biochim. Biophys. Acta, 1764, 1577–1585.
-
Sehanobish, E., Chacón-Verdú, M.D., Sánchez-Amat, A., and Davidson, V.L. (2015) Roles of active site residues in LodA, a cysteine tryptophylquinone dependent ϵ-lysine oxidase. Arch. Biochem. Biophys., 579, 26–32.
10.1016/j.abb.2015.05.013 Google Scholar
- Sehanobish, E., Shin, S., Sánchez-Amat, A., and Davidson, V.L. (2014) Steady-state kinetic mechanism of LodA, a novel cysteine tryptophylquinone-dependent oxidase. FEBS Lett., 588, 752–756.
- Okazaki, S., Nakano, S., Matsui, D., Akaji, S., Inagaki, K., and Asano, Y. (2013) X-ray crystallographic evidence for the presence of the cysteine tryptophylquinone cofactor in l-lysine ϵ-oxidase from Marinomonas mediterranea . J. Biochem., 154, 233–236.
-
Campillo-Brocal, J.C., Lucas-Elío, P., and Sanchez-Amat, A. (2015) Distribution in different organisms of amino acid oxidases with FAD or a quinone as cofactor and their role as antimicrobial proteins in marine bacteria. Mar. Drugs, 13, 7403–7418.
10.3390/md13127073 Google Scholar
- Izidoro, L.F., Sobrinho, J.C., Mendes, M.M., Costa, T.R., Grabner, A.N., Rodrigues, V.M., da Silva, S.L., Zanchi, F.B., Zuliani, J.P., Fernandes, C.F., Calderon, L.A., Stábeli, R.G., and Soares, A.M. (2014) Snake venom l-amino acid oxidases: trends in pharmacology and biochemistry. Biomed. Res. Int., 2014, 196754.
- Chacón-Verdú, M.D., Campillo-Brocal, J.C., Lucas-Elío, P., Davidson, V.L., and Sánchez-Amat, A. (2015) Characterization of recombinant biosynthetic precursors of the cysteine tryptophylquinone cofactors of l-lysine-epsilon-oxidase and glycine oxidase from Marinomonas mediterranea . Biochim. Biophys. Acta, 1854, 1123–1131.
-
Chacón-Verdú, M.D., Gómez, D., Solano, F., Lucas-Elío, P., and Sánchez-Amat, A. (2014) LodB is required for the recombinant synthesis of the quinoprotein l-lysine-epsilon-oxidase from Marinomonas mediterranea
. Appl. Microbiol. Biotechnol., 98, 2981–2989.
10.1007/s00253-013-5168-3 Google Scholar
- Gómez, D., Lucas-Elío, P., Solano, F., and Sánchez-Amat, A. (2010) Both genes in the Marinomonas mediterranea lodAB operon are required for the expression of the antimicrobial protein lysine oxidase. Mol. Microbiol., 75, 462–473.
- Mai-Prochnow, A., Lucas-Elío, P., Egan, S., Thomas, T., Webb, J.S., Sánchez-Amat, A., and Kjelleberg, S. (2008) Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several Gram-negative bacteria. J. Bacteriol., 190, 5493–5501.
- Yu, M., Wang, J., Tang, K., Shi, X., Wang, S., Zhu, W.M., and Zhang, X.H. (2012) Purification and characterization of antibacterial compounds of Pseudoalteromonas flavipulchra JG1. Microbiology, 158, 835–842.
- Chen, W.M., Lin, C.Y., Chen, C.A., Wang, J.T., and Sheu, S.Y. (2010) Involvement of an l-amino acid oxidase in the activity of the marine bacterium Pseudoalteromonas flavipulchra against methicillin-resistant Staphylococcus aureus . Enzyme Microb. Technol., 47, 52–58.
- Campillo-Brocal, J.C., Lucas-Elío, P., and Sánchez-Amat, A. (2013) Identification in Marinomonas mediterranea of a novel quinoprotein with glycine oxidase activity. Microbiologyopen, 2, 684–694.
- Campillo-Brocal, J.C., Chacón-Verdú, M.D., Lucas-Elío, P., and Sánchez-Amat, A. (2015) Distribution in microbial genomes of genes similar to lodA and goxA which encode a novel family of quinoproteins with amino acid oxidase activity. BMC Genomics, 16, 231.
-
Yu, Z., Zhou, N., Qiao, H., and Qiu, J. (2014) Identification, cloning, and expression of l-amino acid oxidase from marine Pseudoalteromonas sp. B3. Sci. World J., 2014, 979858.
10.1155/2014/979858 Google Scholar
- Rao, D., Webb, J.S., and Kjelleberg, S. (2005) Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata . Appl. Environ. Microbiol., 71, 1729–1736.
- Rao, D., Webb, J.S., and Kjelleberg, S. (2006) Microbial colonization and competition on the marine alga Ulva australis . Appl. Environ. Microbiol., 72, 5547–5555.
- Burmølle, M., Webb, J.S., Rao, D., Hansen, L.H., Sørensen, S.J., and Kjelleberg, S. (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl. Environ. Microbiol., 72, 3916–3923.
- Mai-Prochnow, A., Webb, J.S., Ferrari, B.C., and Kjelleberg, S. (2006) Ecological advantages of autolysis during the development and dispersal of Pseudoalteromonas tunicata biofilms. Appl. Environ. Microbiol., 72, 5414–5420.
- Hazan, R., Que, Y.A., Maura, D., Strobel, B., Majcherczyk, P.A., Hopper, L.R., Wilbur, D.J., Hreha, T.N., Barquera, B., and Rahme, L.G. (2016) Auto poisoning of the respiratory chain by a quorum-sensing-regulated molecule favors biofilm formation and antibiotic tolerance. Curr. Biol., 26, 195–206.
- Pollegioni, L., Motta, P., and Molla, G. (2013) l-amino acid oxidase as biocatalyst: A dream too far? Appl. Microbiol. Biotechnol., 97, 9323–9341.
- Hossain, G.S., Li, J., Shin, H.D., Du, G., Liu, L., and Chen, J. (2014) l-amino acid oxidases from microbial sources: types, properties, functions, and applications. Appl. Microbiol. Biotechnol., 98, 1507–1515.
- Kasai, K., Ishikawa, T., Nakamura, T., and Miura, T. (2015) Antibacterial properties of l-amino acid oxidase: mechanisms of action and perspectives for therapeutic applications. Appl. Microbiol. Biotechnol., 19, 7847–7857.
- Beloin, C., Renard, S., Ghigo, J.M., and Lebeaux, D. (2014) Novel approaches to combat bacterial biofilms. Curr. Opin. Pharmacol., 18, 61–68.
- Golberg, K., Eltzov, E., Shnit-Orland, M., Marks, R.S., and Kushmaro, A. (2011) Characterization of quorum sensing signals in coral-associated bacteria. Microb. Ecol., 61, 783–792.