Bio-Inspired Molecules Extracted from Marine Macroalgae: A New Generation of Active Ingredients for Cosmetics and Human Health
Valérie Stiger-Pouvreau
University of Brest, CNRS, IRD, Ifremer, LEMAR UMR 6539, IUEM, Technopôle Brest-Iroise, Rue DUMONT d'URVILLE, 29280 Plouzané, France
Search for more papers by this authorFabienne Guerard
University of Brest, CNRS, IRD, Ifremer, LEMAR UMR 6539, IUEM, Technopôle Brest-Iroise, Rue DUMONT d'URVILLE, 29280 Plouzané, France
Search for more papers by this authorValérie Stiger-Pouvreau
University of Brest, CNRS, IRD, Ifremer, LEMAR UMR 6539, IUEM, Technopôle Brest-Iroise, Rue DUMONT d'URVILLE, 29280 Plouzané, France
Search for more papers by this authorFabienne Guerard
University of Brest, CNRS, IRD, Ifremer, LEMAR UMR 6539, IUEM, Technopôle Brest-Iroise, Rue DUMONT d'URVILLE, 29280 Plouzané, France
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorSummary
Marine seaweeds produce protective and defensive compounds, for example, carbohydrates and phenolic compounds that are a source of bioinspiration for molecules with cosmetic and human health applications. This chapter provides a general description of seaweeds, together with a brief overview of the adaptive and chemical defenses developed by these organisms. Among the great diversity of metabolites produced by seaweeds, we focus on specific carbohydrates (floridoside and mannitol) and phenolic compounds (mycosporine-like amino acids and phlorotannins) produced by macroalgae. Particular attention is paid to their highly variable chemical structure and methods for their extraction and purification. Their mechanisms of action are discussed, focusing on osmoregulation, desiccation, and photoprotection, which affect seaweed ecophysiology. Finally, we review their utility for cosmetology as moisturizers, sunscreens, and antiaging agents, for human health as wound dressings, and for skin regeneration. We point out the challenges faced when using these natural compounds in the cosmetic and human health sectors and the problems linked to the exploitation of this natural resource.
References
- de Reviers, B. (2002) Biologie et Phylogénie des Algues. Vol. 1, Belin, Paris, pp. 352.
- Stengel, D.B., Connan, S., and Popper, Z.A. (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol. Adv., 29, 483–501.
- Norton, T.A., Melkonian, M., and Andersen, R. (1996) Algal biodiversity. Phycologia, 35, 308–326.
- Klöser, H., Mercuri, G., Laturnus, F. et al. (1994) On the competitive balance of macroalgae at Potter Cove (King George Island, South Shetlands). Polar Biol., 14, 11–16.
- Gómez, I., Weykam, G., Klöser, H., and Wiencke, C. (1997) Photosynthetic light requirements, metabolic carbon balance and zonation of sublittoral macroalgae from King George Island (Antarctica). Mar. Ecol. Prog. Ser., 148, 281–293.
- Guiry, M.D. and Guiry, G.M. (2016) AlgaeBase, World-wide Electronic Publication, National University of Ireland, Galway, http://www.algaebase.org (accessed 7 September 2017).
- Barbosa, M., Valentão, P., and Andrade, P.B. (2014) Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases. Mar. Drugs, 12, 4934–4972.
- Iken, K., Quartino, M.L., and Wiencke, C. (1999) Histological identification of macroalgae from stomach contents of the Antarctic fish Notothenia coriiceps using semi-thin sections. Mar. Ecol., 20, 11–17.
- Amsler, C.D. (2012) Chemical ecology of seaweeds, in Seaweed Biology, Novel Insights into Ecophysiology, Ecology and Utilization, Ecological Studies, vol. 219 (eds C. Wiencke and K. Bischof), Springer-Verlag, Berlin Heidelberg, pp. 177–188.
- Steneck, R.S., Graham, M.H., Bourque, B.J. et al. (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv., 29, 436–459.
- Bellwood, D.R., Hughes, T.P., Folke, C., and Nyström, M. (2004) Confronting the coral reef crisis. Nature, 429, 827–833.
- Paddack, M.J., Cowen, R.K., and Sponaugle, S. (2006) Grazing pressure of herbivorous coral reef fishes on low coral-cover reefs. Coral Reefs, 25, 461–472.
- Poray, A.K. and Carpenter, R.C. (2014) Distributions of coral reef macroalgae in a back reef habitat in Moorea, French Polynesia. Coral Reefs, 33, 67–76.
- Duffy, J.E. and Hay, M.E. (1990) Seaweed adaptations to herbivory. BioScience, 40 (5), 368–375.
- Pavia, H. and Toth, G.B. (2000) Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum . Ecology, 81, 3212–3225.
- Cetrulo, G.L. and Hay, M.E. (2000) Activated chemical defenses in tropical versus temperate seaweeds. Mar. Ecol. Prog. Ser., 207, 243–253.
- Van Alstyne, K.L., Wolfe, G.V., Freidenburg, T.L. et al. (2001) Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar. Ecol. Prog. Ser., 213, 53–65.
- Hay, M.E., Kappel, Q.E., and Fenical, W. (1994) Synergisms in plant defenses against herbivores: interactions of chemistry, calcification, and plant quality. Ecology, 75, 1714–1726.
- Pavia, H., Cevin, G., Lindgren, A., and Äberg, R. (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum . Mar. Ecol. Prog. Ser., 157, 139–146.
- Toth, G. and Pavia, H. (2000) Lack of phlorotannin induction in the brown seaweed Ascophyllum nodosum in response to increased copper concentrations. Mar. Ecol. Prog. Ser., 192, 119–126.
- Sotka, E.E., Taylor, R.B., and Hay, M.E. (2002) Tissue-specific induction of resistance to herbivores in a brown seaweed: the importance of direct grazing versus waterborne signals from grazed neighbors. J. Exp. Mar. Biol. Ecol., 277, 1–12.
- Swanson, A.K. and Druehl, L.D. (2002) Induction, exudation and the UV protective role of kelp phlorotannins. Aquat. Bot., 73, 241–253.
- Connan, S., Goulard, F., Stiger, V. et al. (2004) Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae. Bot. Mar., 47, 410–416.
- Stiger, V., Deslandes, E., and Payri, C.E. (2004) Phenolic contents of two brown algae, Turbinaria ornata and Sargassum mangarevense on Tahiti (French Polynesia): interspecific, ontogenic and spatio-temporal variations. Bot. Mar., 47, 402–409.
-
Kirst, G.O. (1996) Osmotic adjustment in phytoplankton and macroalgae. The use of dimethylsulfoniopropionate (DMSP), in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (eds R.P. Kiene, P. Visscher, M. Keller, and G.O. Kirst), Plenum, New York, pp. 121–129.
10.1007/978-1-4613-0377-0_11 Google Scholar
-
Stiger-Pouvreau, V., Bourgougnon, N., and Deslandes, E. (2016) Carbohydrates from seaweeds, in Seaweed in Health and Disease Prevention (eds J. Fleurence and I. Levine), Elsevier, pp. 223–274.
10.1016/B978-0-12-802772-1.00008-7 Google Scholar
- Reed, D.C. (1990) An experimental evaluation of density dependence in a subtidal algal population. Ecology, 71, 2286–2296.
- Lobban, C.S. and Harrison, P.J. (1997) Seaweed Ecology and Physiology, Cambridge University Press, Cambridge, 359 pp.
- Burritt, D.J., Larkindale, J., and Hurd, K. (2002) Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta, 215, 829–838.
- Kumar, M., Gupta, V., Trivedi, N., Kumari, P. et al. (2011) Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environ. Exp. Bot., 72, 194–201.
- Bischof, K. and Rautenberger, R. (2012) Seaweed responses to environmental stress: reactive oxygen and antioxidative strategies, in Seaweed Biology, Novel Insights into Ecophysiology, Ecology and Utilization, Ecological Studies, vol. 219 (eds C. Wiencke and K. Bischof), Springer-Verlag, Berlin Heidelberg, pp. 109–132.
- Collén, J. and Davison, I.R. (1999) Reactive oxygen production and damage in intertidal Fucus spp. (Phaeophyceae). J. Phycol., 35, 54–61.
- Collén, J. and Davison, I.R. (1999) Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus . Plant Cell Environ., 22, 1143–1151.
- Mabeau, S. and Kloareg, B. (1987) Isolation and analysis of the cell walls of brown algae: Fucus spiralis, F. ceranoides, F. vesiculosus, F. serratus, Bifurcaria bifurcata and Laminaria digitata . J. Exp. Bot., 38, 1573–1580.
- Karsten, U., Barrow, K.D., and King, R.J. (1993) Floridoside, L-isofloridoside, and D-isofloridoside in the red alga Porphyra columbina . Plant Physiol., 103, 485–491.
- Pardoe, I.S. and Hartley, C.E. (2001) A pharmaceutical composition comprising floridoside for use in the therapeutic or prophylactic treatment of neoplastic disease. WO Patent 0166100.
- Colombo, D., Compostella, F., Ronchetti, F. et al. (2001) Diesters of glycosylglycerol active in cancer chemoprevention. Eur. J. Med. Chem., 36, 691–695.
- Simon-Colin, C., Michaud, F., Léger, J.M., and Deslandes, E. (2003) Crystal structure and chirality of natural floridoside. Carbohydr. Res., 338, 2413–2416.
- Kerjean, V., Morel, B., Stiger, V. et al. (2007) Optimization of floridoside production in the red alga Mastocarpus stellatus: pretreatment, extraction and seasonal variations. Bot. Mar., 50, 59–64.
- Goulard, F., Diouris, M., Quere, G. et al. (2001) Salinity effects on NDP-sugars, floridoside, starch, and carrageenan yield, and UDP-glucose-pyrophosphorylase and -epimerase activities of cultivated Solieria chordalis . J. Plant Physiol., 158, 1387–1394.
- Iwamoto, K. and Shiraiwa, Y. (2005) Salt-regulated mannitol metabolism in algae. Mar. Biotechnol., 7, 407–415.
- Michel, G., Tonon, T., Scornet, D. et al. (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol., 188, 82–97.
- Andersen, T., Melvik, J.E., Gåserød, O. et al. (2012) Ionically gelled alginate foams: physical properties controlled by operational and macromolecular parameters. Biomacromolecules, 13, 3703–3710.
- Chang, W.-S., van de Mortel, M., Nielsen, L. et al. (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J. Bacteriol., 189, 8290–8299.
- Kraemer, G.P. and Chapman, D.J. (1991) Biomechanics and alginic acid composition during hydrodynamic adaptation by Egregia menziesii (Phaeophyta) juveniles. J. Phycol., 27, 47–53.
- Bischof, K., Hanelt, D., and Wiencke, C. (1998) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar. Biol., 131, 597–605.
- Dring, M.J., Wagner, A., Boeskov, J., and Lüning, K. (1996) Sensitivity of intertidal and subtidal red algae to UVA and UVB radiation, as monitored by chlorophyll fluorescence measurements: influence of collection depth and season, and length of irradiation. Eur. J. Phycol., 31, 293–302.
-
Aguilera, J., Karsten, U., Lippert, H.
et al. (1999) Effects of solar radiation on growth, photosynthesis and respiration of marine macroalgae from the Arctic. Mar. Ecol. Prog. Ser., 191, 109–119.
10.3354/meps191109 Google Scholar
- Larkum, A.W.D. and Wood, W.F. (1993) The effect of UV-B radiation on photosynthesis and respiration of phytoplankton, benthic macroalgae and seagrass. Photosynth. Res., 36, 17–23.
- Hanelt, D., Wiencke, C., and Nultsch, W. (1997) Influence of UV radiation on photosynthesis of Arctic macroalgae in the field. J. Photochem. Photobiol., B, 38, 40–47.
- Gómez, I., Pérez-Rodrígez, E., Viñegla, B. et al. (1998) Effects of solar radiation on photosynthesis, UV-absorbing compounds and enzyme activities of the green alga Dasycladus vermicularis from southern Spain. Photochem. Photobiol., 47, 46–57.
- Cockell, C.S. and Knowland, J. (1999) Ultraviolet radiation screening compounds. Biol. Rev., 74, 311–345.
- Gröniger, A. and Häder, D.P. (2000) Stability of mycosporine-like amino acids. Rec. Res. Devel. Photochem. Photobiol., 4, 247–252.
- Solovchenko, A.E. and Merzlyak, M.N. (2008) Screening of visible and UV radiation as a photoprotective mechanism in plants. Russ. J. Plant Physiol., 55, 719–737.
- Fernandes, S.C.M., Alonso-Varona, A., Palomares, T. et al. (2015) Exploiting mycosporines as natural molecular sunscreens for the fabrication of UV-absorbing green materials. ACS Appl. Mater. Interfaces, 7, 16558–16564.
- Balskus, E.P. and Walsh, C.T. (2010) The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science, 329, 1653–1656.
- La Barre, S., Roullier, C., and Boustie, J. (2014) Mycosporine-like amino acids (MAAs) in biological photosystems, in Outstanding Marine Molecules: Chemistry, Biology, Analysis, 1st edn (eds S. La Barre and J.-M. Kornprobst), Wiley-VCH Verlag GmbH & Co. KGaA, pp. 333–360.
- Carreto, J.I., Carignan, M.O., Daleo, G., and de Marco, S.G. (1990) Occurrence of mycosporine-like amino acids in the red-tide dinoflagellate Alexandrium excavatum: UV-photoprotective compounds? J. Plankton Res., 12, 909–921.
- Bandaranayake, W.M. (1998) Mycosporines: Are they nature's sunscreens? Nat. Prod. Rep., 15, 159–172.
- Dunlap, W.C. and Shick, J.M. (1998) Ultra violet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J. Phycol., 34, 418–430.
- Riegger, L. and Robinson, D. (1997) Photoinduction of UV-absorbing compounds in Antarctic diatoms and Phaeocystis antarctica . Mar. Ecol. Prog. Ser., 160, 13–25.
- Karsten, U., Sawall, T., and Wiencke, C. (1998) A survey of the distribution of UV-absorbing substances in tropical macroalgae. Phycol. Res., 46, 271–279.
- Karsten, U. and Wiencke, C. (1999) Factors controlling the formation of UV-absorbing mycosporine-like amino acids in the marine red alga Palmaria palmata from Spitsbergen (Norway). J. Plant Physiol., 155, 407–415.
- Franklin, L.A., Yokovleva, I., Karsten, U., and Lüning, K. (1999) Synthesis of mycosporine-like amino acids in Chondrus crispus (Florideophyceae) and the consequences for sensitivity to ultraviolet-B radiation. J. Phycol., 35, 682–693.
- Jeffrey, S.W., MacTavish, H.S., Dunlap, W.C. et al. (1999) Occurrence of UV-A and UV-B absorbing compounds in 152 species (206 strains) of marine microalgae. Mar. Ecol. Prog. Ser., 189, 35–51.
-
Hoyer, K., Karsten, U., Sawall, T., and Wiencke, C. (2001) Photoprotective substances in Antarctic macroalgae and their variation with respect to depth distribution, different tissues and developmental stages. Mar. Ecol. Prog. Ser., 211, 117–129.
10.3354/meps211117 Google Scholar
- Karsten, U., Friedl, T., Schumann, R. et al. (2005) Mycosporine-like amino acids (MAA) and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J. Phycol., 41, 557–566.
- Yuan, Y.V., Westcott, N.D., Hu, C., and Kitts, D.D. (2009) Mycosporine-like amino acid composition of edible red alga Palmaria palmata (dulse) harvested from the west and east coasts of Grand Manan Island, New Brunswick. Food Chem., 112, 321–328.
- Figueroa, F.L., Korbee, N., de Clerck, O. et al. (2007) Characterization of Grateloupia lanceola (Halymeniales, Rhodophyta), an obscure foliose Grateloupia from the Iberian Peninsula, based on morphology, comparative sequence analysis and mycosporine-like amino acid composition. Eur. J. Phycol., 42, 231–242.
- Bedoux, G., Hardouin, K., Marty, C. et al. (2014) Chemical characterization and photoprotective activity measurement of extracts from the red macroalgae Solieria chordalis . Bot. Mar., 57, 291–301.
- Karsten, U., Sawall, T., Hanelt, D. et al. (1998) An inventory of UV-absorbing mycosporine-like amino acids in macroalgae from polar to warm temperate regions. Bot. Mar., 41, 443–453.
- Karsten, U. and West, J.A. (2000) Living in the intertidal zone–seasonal effects on heterosides and sun-screen compounds in the red alga Bangia atropurpurea (Bangiales). J. Exp. Mar. Biol. Ecol., 254, 221–234.
- Hoyer, K., Karsten, U., and Wiencke, C. (2002) Induction of sunscreen compounds in Antarctic macroalgae by different radiation conditions. Mar. Biol., 141, 619–627.
- Karsten, U., Bischof, K., and Wiencke, C. (2001) Photosynthetic performance of Arctic macroalgae after transplantation from deep to shallow waters followed by exposure to natural solar radiation. Oecologia, 127, 11–20.
- Conde, F.R., Churio, M.S., and Previtali, C.M. (2000) The photoprotector mechanism of mycosporine-like amino acids, excited-state properties and photostability of porphyra-334 in aqueous solution. J. Photochem. Photobiol., B, 56, 139–144.
- Ragan, M.A. and Glombitza, K.-W. (1986) Phlorotannins, brown algal polyphenols. Prog. Phycol. Res., 4, 129–241.
- Schoenwaelder, M.E.A. (2002) The occurrence and cellular significance of physodes in brown algae. Phycologia, 41, 125–139.
- Amsler, C.D. and Fairhead, V.A. (2006) Defensive and sensory chemical ecology of brown algae. Adv. Bot. Res., 43, 1–91.
- Surget, G., Stiger-Pouvreau, V., Le Lann, K. et al. (2015) Sunscreen and antioxidant photoprotective capacities of polyphenolic compounds originated from a salt-marsh plant extract from Brittany (France). J. Photochem. Photobiol., B, 143, 52–60.
- Lohézic-Le Dévéhat, F., Legouin, B., Couteau, C. et al. (2013) Lichenic extracts and metabolites as UV filters. J. Photochem. Photobiol., B, 120, 17–28.
-
Le Lann, K., Surget, G., Couteau, C.
et al. (2016) Sunscreen, antioxidant, and bactericide capacities of phlorotannins from the brown macroalga Halidrys siliquosa
. J. Appl. Phycol., 28, 3547–3559.
10.1007/s10811-016-0853-0 Google Scholar
- Le Lann, K., Ferret, C., VanMee, E. et al. (2012) Total phenolic, size-fractionated phenolics and fucoxanthin content of tropical Sargassaceae (Fucales, Phaeophyceae) from the South Pacific Ocean: spatial and specific variability. Phycol. Res., 60, 37–50.
-
Le Lann, K., Connan, S., and Stiger-Pouvreau, V. (2012) Phenology, TPC and size-fractioning phenolics variability in temperate Sargassaceae (Phaeophyceae, Fucales) from Western Brittany: native versus introduced species. Mar. Environ. Res., 80, 1–11.
10.1016/j.marenvres.2012.05.011 Google Scholar
- Stiger-Pouvreau, V., Jégou, C., Cérantola, S. et al. (2014) Phlorotannins in Sargassaceae species from Brittany (France): interesting molecules for ecophysiological and valorisation purposes. Adv. Bot. Res., 71, 379–412.
- Meslet-Cladière, L., Delage, L., Leroux, C.J. et al. (2013) Structure/function analysis of a type III polyketide synthase in the brown alga Ectocarpus siliculosus reveals a biochemical pathway in phlorotannin monomer biosynthesis. Plant Cell, 25 (8), 3089–3103.
- La Barre, S., Potin, P., Leblanc, C., and Delage, L. (2010) The halogenated metabolism of brown algae (Phaeophyta), its biological importance and its environmental significance. Mar. Drugs, 8, 988–1010.
- Tartarotti, B. and Sommaruga, R. (2002) The effect of different methanol concentrations and temperatures on the extraction of mycosporine-like amino acids (MAAs) in algae and zooplankton. Arch. Hydrobiol., 154, 691–703.
- Yuan, Y.V., Bone, D.E., and Carrington, M.F. (2005) Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro . Food Chem., 91, 485–494.
- Yoshiki, M., Tsuge, K., Tsuruta, Y., Yoshimura, T., Koganemaru, K., Sumi, T., Matsui, T., and Matsumoto, K. (2009) Production of new antioxidant compound from mycosporine-like amino acid, porphyra-334 by heat treatment. Food Chem., 113, 1127–1132.
- Nakamura, H., Kobayashi, J., and Hirata, J. (1982) Separation of mycosporine-like amino acids in marine organisms using reversed phase high-performance liquid chromatography. J. Chromatogr., 250, 113–118.
- Bischof, K., Kraebs, G., Hanelt, D., and Wiencke, C. (2000) Photosynthetic characteristics and mycosporine-like amino acids under UV radiation: A competitive advantage of Mastocarpus stellatus over Chondrus crispus at the Helgoland shoreline? Helgol. Mar. Res., 54, 47–52.
- Korbee, N., Figueroa, F.L., and Aguilera, J. (2005) Light quality effects on photosynthesis and accumulation of mycosporine-like amino acids (MAAs) in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J. Photochem. Photobiol., B, 80, 71–78.
- Ragan, M.A. and Jensen, A. (1978) Quantitative studies on brown algal phenols. II. Seasonal variation in polyphenol content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus (L.). J. Exp. Mar. Biol. Ecol., 34, 245–258.
- Le Lann, K., Jégou, C., and Stiger-Pouvreau, V. (2008) Impact of different conditioning treatments on total phenolic content and antioxidant activities in two Sargassacean species: comparison of the frondose Sargassum muticum (Yendo) Fensholt and the cylindrical Bifurcaria bifurcata R. Ross. Phycol. Res., 56, 238–245.
- Plouguerné, E., Le Lann, K., Connan, S. et al. (2006) Spatial and seasonal variations in density, maturity, length and phenolic content of the invasive brown macroalga Sargassum muticum along the coast of Western Brittany (France). Aquat. Bot., 85, 337–344.
- Tanniou, A., Serrano Léon, E., Vandanjon, L. et al. (2013) Green improved processes to extract bioactive phenolic compounds from brown macroalgae using Sargassum muticum as model. Talanta, 104, 44–52.
- Ar Gall, E., Lelchat, F., Hupel, M., Jegou, C., and Stiger-Pouvreau, V. (2015) Extraction and purification of phlorotannins from brown algae, in Natural Products from Marine Algae: Methods and Protocols, vol. 1308 (eds D.B. Stengel and S. Connan), Springer Science + Business Media, New York, pp. 131–143.
- Surget, G., Roberto, V., Le Lann, K. et al. (2016) Green algae: a source of natural compounds with proliferative, mineralogenic and antioxidant activities. J. Appl. Phycol., 29, 575–584.
-
Ibañez, E., Herrero, M., Mendiola, J.A., and Castro-Puyana, M. (2012) Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates, in Marine Bioactive Compounds (ed. M. Hayes), Springer US, Boston, MA, pp. 55–98.
10.1007/978-1-4614-1247-2_2 Google Scholar
- Plaza, M. and Rodríguez-Meizoso, I. (2013) Advanced extraction processes to obtain bioactives from marine foods, in Bioactive Compounds from Marine Foods (eds B. Hernández-Ledesma and M. Herrero), John Wiley & Sons Ltd, pp. 343–371.
- Plaza, M., Santoyo, S., Jaime, L. et al. (2010) Screening for bioactive compounds from algae. J. Pharm. Biomed. Anal., 51, 450–455.
- Zubia, M., Fabre, M.-S., Kerjean, V. et al. (2009) Antioxidant and antitumoral activities of some Phaeophyta from Brittany coasts. Food Chem., 116, 693–701.
- Tanniou, A., Vandanjon, L., Incera, M. et al. (2014) Assessment of the spatial variability of phenolic contents and associated bioactivities in the invasive alga Sargassum muticum sampled along its European range from Norway to Portugal. J. Appl. Phycol., 26, 1215–1230.
- del Pilar Sánchez-Camargo, A., Montero, L., Stiger-Pouvreau, V. et al. (2016) Is enzyme-assisted extraction useful to improve the recovery of bioactive compounds from algae by pressurized liquids? Food Chem., 192, 67–74.
- Montero, L., Sánchez-Camargo, A.P., García-Canas, V. et al. (2016) Anti-proliferative activity and chemical characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on North-Atlantic coasts. J. Chromatogr. A, 1428, 115–125.
- Rinaudo, M. (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym. Int., 57, 397–430.
- Luo, Y. and Wang, Q. (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol., 64, 353–367.
- Lee, K.Y. and Mooney, D.J. (2012) Alginate: properties and biomedical applications. Prog. Polym. Sci., 37, 106–126.
- Chandika, P., Ko, S.-C., and Jung, W.-K. (2015) Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration. Int. J. Biol. Macromol., 77, 24–35.
- Pawar, S.N. and Edgar, K.J. (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials, 33, 3279–3305.
- Se-Kwon, K. (2014) Marine cosmeceuticals. J. Cosmet. Dermatol., 13, 56–67.
- Anunciato, T.P. and da Rocha Filho, P.A. (2012) Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. J. Cosmet. Dermatol., 11, 51–54.
- Sator, P.G., Schimidt, J.B., and Honigsmann, H. (2003) Comparison of epidermal hydration and skin surface lipids in healthy individuals and in patients with atopic dermatitis. J. Am. Acad. Dermatol., 48, 352–358.
- Baby, A.R., Lacerda, A.C.L., Pinto, C.A.S.O. et al. (2008) Métodos biofísicos empregados na análise do estrato córneo. Lat. Am. J. Pharm., 27, 124–130.
- Verdier-Sévrains, S. and Bonté, F. (2007) Skin hydration: a review on its molecular mechanisms. J. Cosmet. Dermatol., 6, 72–85.
- Wang, S., Kislalioglu, M.S., and Breuer, M. (1999) The effect of rheological properties of experimental moisturizing creams/lotions on their efficacy and perceptual attributes. Int. J. Cosmet. Sci., 21, 167–188.
- Rawlings, A.V., Canestrari, D.A., and Dobkowski, B. (2004) Moisturizer technology versus clinical performance. Dermatol. Ther., 17, 49–56.
- Lodén, M. (2003) Role of tropical emollients and moisturizers in the treatment of dry skin barrier disorders. Am. J. Clin. Dermatol., 4, 771–788.
- Padamwar, M.N., Pawar, N., Daithankar, A.V., and Mahadik, K.R. (2005) Silk serin as a moisturizer: an in vivo study. J. Cosmet. Dermatol., 4, 250–257.
- Deslandes, E. and Bodeau, C. (2007) Cosmetic composition containing red algae extract comprising a combination of floridoside and isethionic acid. Patent EP 1743628 A1.
- Taieb, M., Gay, C., Sebban, S., and Secnazi, P. (2012) Hyaluronic acid plus mannitol treatment for improved skin hydration and elasticity. J. Cosmet. Dermatol., 11, 87–92.
- Leite e Silva, V.R., Schulman, M.A., Ferelli, C. et al. (2009) Hydrating effects of moisturizer active compounds incorporated into hydrogels: in vivo assessment and comparison between devices. J. Cosmet. Dermatol., 8, 32–39.
- Morabito, K., Shapley, N.C., Steeley, K.G., and Tripathi, A. (2011) Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. Int. J. Cosmet. Sci., 33, 385–390.
- Scalia, S. and Mezzena, M. (2010) Photostabilization effect of quercetin on the UV filter combination, butyl methoxydibenzoylmethane-octyl methoxycinnamate. Photochem. Photobiol., 86, 273–278.
- Damiani, E., Rosati, L., Castagna, R. et al. (2006) Changes in ultraviolet absorbance and hence in protective efficacy against lipid peroxidation of organic sunscreens after UV-A irradiation. J. Photochem. Photobiol., B, 82, 204–213.
- Nohynek, G.J. and Dufour, E.K. (2012) Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: a risk to human health? Arch. Toxicol., 86, 1063–1075.
- Kullavanijaya, P. and Lim, H.W. (2005) Photoprotection. J. Am. Acad. Dermatol., 52, 937–958.
- Dalheim, M.O., Vanacker, J., Najmi, M.A. et al. (2016) Efficient functionalization of alginate biomaterials. Biomaterials, 80, 146–156.
- Hilderbrand, A.M., Ovadia, E.M., Rehmann, M.S. et al. (2016) Biomaterials for 4D stem cell culture. Curr. Opin. Solid State Mater. Sci., 20, 212–224.
- Debele, T.A., Mekuria, S.L., and Tsai, H.C. (2012) Polysaccharide based nanogels in the drug delivery system: application as the carrier of pharmaceutical agents. Mater. Sci. Eng., C, 2, 2–11.
- Tiwari, G., Tiwari, R., Sriwastawa, B. et al. (2012) Drug delivery systems: an updated review. Int. J. Pharm. Investig., 2, 2–11.
- Momoh, F.U., Boateng, J.S., Richardson, S.C.W. et al. (2015) Development and functional characterization of alginate dressing aspotential protein delivery system for wound healing. Int. J. Biol. Macromol., 81, 137–150.
- Goh, C.H., Heng, P.W.S., and Chan, L.W. (2012) Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr. Polym., 88, 1–12.
- Jayarama Reddy, V., Radhakrishnan, S., Ravichandran, R. et al. (2013) Nanofibrous structured biomimetic strategies for skin tissue regeneration. Wound Repair Regen., 21, 1–16.
- Jayakumar, R., Prabaharan, M., Sudheesh Kymar, P.T. et al. (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv., 29, 322–337.
- Jin, S.G., Yousaf, A.M., Kyeong, S.K. et al. (2016) Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings. Int. J. Pharm., 501, 160–166.
- Kamoun, E.A., Chen, X., Mohy Eldin, M.S., and Kenawy, E.R.S. (2015) Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arabian J. Chem., 8, 1–14.
- Gu, Z., Xieb, H., Huang, C. et al. (2013) Preparation of chitosan/silk fibroin blending membrane fixed with alginate dialdehyde for wound dressing. Int. J. Biol. Macromol., 58, 121–126.
- Sweeney, I.R., Miraftab, M., and Collyer, G. (2014) Absorbent alginate fibres modified with hydrolysed chitosan for wound care dressings – II. Pilot scale development. Carbohydr. Polym., 102, 920–927.
- Knill, C.J., Kennedy, J.F., Mistry, J. et al. (2004) Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressings. Carbohydr. Polym., 55, 65–76.
- Murakami, K., Aoki, H., Nakamura, S. et al. (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressing. Biomaterials, 31, 83–90.
- Landis, S.J. (2008) Chronic wound infection and antimicrobial use. Adv. Skin Wound Care, 21, 531–540.
- Wiegand, C., Heinze, T., and Hipler, U.C. (2009) Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen., 17, 511–521.
- Qin, Y. (2008) Alginate fibres: an overview of the production processes and applications in wound management. Polym. Int., 57, 171–180.
- Miraftab, M., Masood, R., and Edward-Jones, V. (2014) A new carbohydrate-based wound dressing fibre with superior absorption and antimicrobial potency. Carbohydr. Polym., 101, 1184–1190.
- Agrenn, M.S. (1999) Zinc in wound repair. Arch. Dermatol., 135, 1273–1274.
- Shalumon, K.T., Anulekha, K.H., Nair, S.V., Nair, S.V., Chennazhi, K.P., and Jayakumar, R. (2011) Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int. J. Biol. Macromol., 49, 247–254.
- Kamoun, E.A., Kenawy, E.-R.S., Tamer, T.M. et al. (2015) Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arabian J. Chem., 8, 38–47.
- Cicco, F.D., Porta, A., Sansone, F. et al. (2014) Nanospray technology for an in situ gelling nanoparticulate powder as a wound dressing. Int. J. Pharm., 473, 30–37.
- Han, F., Dong, Y., Song, A. et al. (2014) Alginate/chitosan based bi-layer composite membrane as potential sustained-release wound dressing containing ciprofloxacin hydrochloride. Appl. Surf. Sci., 311, 626–634.
- Ozseker, E.E. and Akkaya, A. (2016) Development of a new antibacterial biomaterial by tetracycline immobilization on calcium-alginate beads. Carbohydr. Polym., 151, 441–451.
- Liakos, I., Rizzello, L., Scurr, D.J. et al. (2014) All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int. J. Pharm., 463, 137–145.
- Balakrishnan, B., Mohanty, M., Fernandez, A.C. et al. (2006) Evaluation of the effect of incorporation of dibutyryl cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 27, 1355–1361.
- Rabbany, S.Y., Pastore, J., Yamamoto, M. et al. (2010) Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant., 19, 399–408.
- Thu, H.-E., Zulfakar, M.H., and Ng, S.-F. (2012) Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int. J. Pharm., 434, 375–383.
- Rezvanian, M., Amin, M.C.I.M., and Ng, S.F. (2016) Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing. Carbohydr. Polym., 137, 295–304.
- Asai, J., Takenaka, H., Hirakawa, S. et al. (2012) Topical simvast accelerates wound healing in diabetes by enhancing angiogenesis and lymphangiogenesis. Am. J. Pathol., 181, 2217–2224.
- Thomas, A., Harding, K.G., and Moore, K. (2000) Alginates from wound dressings activate human macrophages to secrete tumour necrosis factor-α. Biomaterials, 21, 1797–1802.
- Cragg, G.M. and Newman, D.J. (2013) Potential problems with natural product drugs. Biochim. Biophys. Acta, 1830, 3670–3695.