Guanidinium Toxins: Natural Biogenic Origin, Chemistry, Biosynthesis, and Biotechnological Applications
Lorena M. Durán-Riveroll
Alfred-Wegener-Institut, Helmholtz Zentrum für Polar-und Meeresforschung, 27570 Bremerhaven, Germany
CONACYT – Instituto de Ciencias del Mar y Limnología , Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
Search for more papers by this authorAllan D. Cembella
Alfred-Wegener-Institut, Helmholtz Zentrum für Polar-und Meeresforschung, 27570 Bremerhaven, Germany
Search for more papers by this authorJosé Correa-Basurto
Escuela Superior de Medicina–Instituto Politécnico Nacional, Laboratorio de Modelado Molecular y Diseño de Fármacos, 11340 Mexico City, Mexico
Search for more papers by this authorLorena M. Durán-Riveroll
Alfred-Wegener-Institut, Helmholtz Zentrum für Polar-und Meeresforschung, 27570 Bremerhaven, Germany
CONACYT – Instituto de Ciencias del Mar y Limnología , Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
Search for more papers by this authorAllan D. Cembella
Alfred-Wegener-Institut, Helmholtz Zentrum für Polar-und Meeresforschung, 27570 Bremerhaven, Germany
Search for more papers by this authorJosé Correa-Basurto
Escuela Superior de Medicina–Instituto Politécnico Nacional, Laboratorio de Modelado Molecular y Diseño de Fármacos, 11340 Mexico City, Mexico
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorSummary
Neurotoxins belonging to the group of saxitoxin (STX) and tetrodotoxin (TTX) analogs are guanidinium alkaloids that share a common high affinity and ion flux blockage capacity for voltage-gated sodium ion channels (NaV). Members of the STX group, also known as paralytic shellfish toxins (PST), are produced among three genera of marine dinoflagellates and several genera of phylogenetically distant and primarily freshwater filamentous cyanobacteria. The origin of the biosynthetic genes in dinoflagellates remains controversial and may represent single or multiple horizontal gene transfer (HGT) events from progenitor non-photosynthetic bacteria and/or cyanobacteria. The TTXs occur primarily among marine puffer fish and a host of terrestrial amphibians. The biosynthetic pathway has not been completely elucidated and the origin of tetrodotoxicity, including the syndrome puffer fish poisoning (PFP) in human seafood consumers, remains somewhat enigmatic. Although symbiotic bacteria are most often invoked as the source of TTX in macrofauna, endogenous biosynthesis independent of bacteria cannot be excluded. Integration of knowledge on the biogenic origins, linked to heterogeneity of the biogeographical and phylogenetic distribution of these respective toxin groups, provides the basis for rational inferences and reasonable speculation about the functional role in aquatic and terrestrial ecosystems. Recent identification of the biosynthetic genes for STX analogs in both cyanobacteria and dinoflagellates has yielded insights into biosynthetic mechanisms of toxin heterogeneity among strains and the evolutionary origins of their respective elements of the toxin gene clusters. Although it is not fully understood how or why these molecules are produced in nature, development of improved detection methods will make possible the discovery of new sources and analogs. Once genetic mechanisms for toxin biosynthesis are fully incorporated with modeling of receptor binding interactions and the structural–functional affinities of the ion channels, this will facilitate further biotechnological exploitation of these exquisite bioactive compounds and point the way toward future development of pharmaceuticals and therapeutic applications.
References
- Haque, M.A., Islam, Q.T., and Ekram, A.S. (2008) Puffer fish poisoning. J. Teach. Assoc., 21, 199–202.
- Davis, E.W. (1983) The ethnobiology of the Haitian zombi. J. Ethnopharmacol., 9, 85–104.
- Halstead, B.W. (1958) Poisonous fishes. Public Health Rep., 73, 302.
- Chau, R., Kalaitzis, J.A., and Neilan, B.A. (2011) On the origins and biosynthesis of tetrodotoxin. Aquat. Toxicol., 104, 61–72.
- How, C.-K., Chern, C.-H., Huang, Y.-C. et al. (2003) Tetrodotoxin poisoning. Am. J. Emergency Med., 21, 51–54.
- Ahasan, H., Mamun, A., Karim, S. et al. (2004) Paralytic complications of puffer fish (tetrodotoxin) poisoning. Singapore Med. J., 45, 73–74.
- Noguchi, T., Arakawa, O., and Takatani, T. (2006) TTX accumulation in pufferfish. Comp. Biochem. Physiol. D: Genomics Proteomics, 1, 145–152.
- Bane, V., Lehane, M., Dikshit, M. et al. (2014) Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins, 6, 693–755.
- Suehiro, M. (1993) Historical review on chemical and medical studies of globefish toxin before World War II. Yakushigaku Zasshi, 29, 428–434.
- Lago, J., Rodríguez, L.P., Blanco, L. et al. (2015) Tetrodotoxin, an extremely potent marine neurotoxin: distribution, toxicity, origin and therapeutical uses. Mar. Drugs, 13, 6384–6406.
-
Turner, A.D., Higgins, C., Higman, W.
et al. (2015) Potential threats posed by tetrodotoxins in UK waters: examination of detection methodology used in their control. Mar. Drugs, 13, 7357–7376.
10.3390/md13127070 Google Scholar
- Islam, Q., Razzak, M., Islam, M. et al. (2011) Puffer fish poisoning in Bangladesh: clinical and toxicological results from large outbreaks in 2008. Trans. R. Soc. Trop. Med. Hyg., 105, 74–80.
- Lin, S.-J. and Hwang, D.-F. (2001) Possible source of tetrodotoxin in the starfish Astropecten scoparius . Toxicon, 39, 573–579.
- Noguchi, T., Onuki, K., and Arakawa, O. (2011) Tetrodotoxin poisoning due to pufferfish and gastropods, and their intoxication mechanism. ISRN Toxicol., 2011, 276939.
- Yotsu-Yamashita, M., Gilhen, J., Russell, R.W. et al. (2012) Variability of tetrodotoxin and of its analogues in the red-spotted newt, Notophthalmus viridescens (Amphibia: Urodela: Salamandridae). Toxicon, 59, 257–264.
- Sui, L., Chen, K., Hwang, P. et al. (2002) Identification of tetrodotoxin in marine gastropods implicated in food poisoning. J. Nat. Toxins, 11, 213–220.
- Isbister, G.K., Son, J., Wang, F. et al. (2002) Puffer fish poisoning: a potentially life-threatening condition. Med. J. Aust., 177, 650–653.
- Ahmed, S. (2006) Puffer fish tragedy in Bangladesh: an incident of Takifugu oblongus poisoning in Degholia, Khulna. Afr. J. Mar. Sci., 28, 457–458.
- Luo, X., Yu, R.-C., Wang, X.-J. et al. (2012) Toxin composition and toxicity dynamics of marine gastropod Nassarius spp. collected from Lianyungang, China. Food Addit. Contam., 29, 117–127.
- Bentur, Y., Ashkar, J. et al. (2008) Lessepsian migration and tetrodotoxin poisoning due to Lagocephalus sceleratus in the Eastern Mediterranean. Toxicon, 52, 964–968.
- Lau, F.L., Wong, C.-K., and Yip, S. (1995) Puffer fish poisoning. J. Accid. Emergency Med., 12, 214–215.
- Centers for Disease Control and Prevention (1996) Prevention. Tetrodotoxin poisoning associated with eating puffer fish transported from Japan–California, 1996. MMWR, 45, 389.
- Hyun, S.H., Sohn, C.H., Ryoo, S.M. et al. (2011) Clinical analysis of puffer fish poisoning cases. J. Korean Soc. Clin. Toxicol., 9, 95–100.
- Azman, A., Samsur, M., and Othman, M. (2014) Distribution of tetrodotoxin among tissues of pufferfish from Sabah and Sarawak waters. Sains Malays., 43, 1003–1011.
- Núñez-Vázquez, E.J., Yotsu-Yamashita, M., Sierra-Beltrán, A.P. et al. (2000) Toxicities and distribution of tetrodotoxin in the tissues of puffer fish found in the coast of the Baja California Peninsula, Mexico. Toxicon, 38, 729–734.
- Rodriguez, P., Alfonso, A., Vale, C. et al. (2008) First toxicity report of tetrodotoxin and 5, 6, 11-trideoxyTTX in the trumpet shell Charonia lampas lampas in Europe. Anal. Chem., 80, 5622–5629.
- Baptista, M., Silva, M., Sabour, B. et al. (2014) Emergent marine toxins in the temperate North Atlantic coast. Proceeding of the ICES Annual Science Conference, A Coruña, Spain, pp. 15–19.
- Lin, S. and Hwang, D. (2007) Distribution and sources of tetrodotoxin. Sci. Dev., 419, 20–25.
- Chulanetra, M., Sookrung, N., Srimanote, P. et al. (2011) Toxic marine puffer fish in Thailand seas and tetrodotoxin they contained. Toxins, 3, 1249–1262.
- Sims, J.K. and Ostman, D.C. (1986) Pufferfish poisoning: emergency diagnosis and management of mild human tetrodotoxication. Ann. Emergency Med., 15, 1094–1098.
- Jen, H.-C., Nguyen, T.A.-T., Wu, Y.-J. et al. (2014) Tetrodotoxin and paralytic shellfish poisons in gastropod species from Vietnam analyzed by high-performance liquid chromatography and liquid chromatography–tandem mass spectrometry. J. Food Drug Anal., 22, 178–188.
- Tsuda, K., Ikuma, S., Kawamura, M., Tachikawa, R., Sakai, K., Tamura, C. et al. (1964) Tetrodotoxin. VII. On the structures of tetrodotoxin and its derivatives. Chem. Pharm. Bull., 12, 1357–1374.
- Goto, T., Kishi, Y., Takahashi, S. et al. (1965) Tetrodotoxin. Tetrahedron, 21, 2059–2088.
- Woodward, R. (1964) The structure of tetrodotoxin. Pure Appl. Chem., 9, 49–74.
- Mosher, H., Fuhrman, F., Buchwald, H. et al. (1964) Tarichatoxin-tetrodotoxin: a potent neurotoxin. Science, 144, 1100–1110.
- Quayle, D.B. (1969) Paralytic Shellfish Poisoning in British Columbia, Bulletin (Fisheries Research Board of Canada), vol. 68, Fisheries Research Board of Canada, Ottawa.
- Trainer, V.L. (2002) Harmful algal blooms on the U.S. west coast, in Harmful Algal Blooms in the PICES Region of the North Pacific (eds F.J.R. Taylor and V.L. Trainer), PICES, pp. 89–118.
- Lescarbot, M. (1618) Histoire de la Nouvelle-France, vol. 1, English translation by Champlain Society, Toronto (1907), 331 pp.
- Heriot, G. (1807) Travels through the Canadas. Printed for Richard Phillips by Blackfriars, London, 602 pp.
- Bordner, J., Thiessen, W.E., Bates, H.A. et al. (1975) Structure of a crystalline derivative of saxitoxin. Structure of saxitoxin. J. Am. Chem. Soc., 97, 6008–6012.
- Schantz, E.J., Ghazarossian, V., Schnoes, H.K. et al. (1975) Structure of saxitoxin. J. Am. Chem. Soc., 97, 1238–1239.
- Stewart, C.E. (2006) Weapons of Mass Casualties and Terrorism Response Handbook, Jones & Bartlett Learning American Academy of Academic Surgeons, Sudbury, Massachusetts.
- Fuhrman, F.A. (1986) Tetrodotoxin, tarichatoxin, and chiriquitoxin: historical perspectives. Ann. N.Y. Acad. Sci., 479, 1–14.
- Miyazawa, K. and Noguchi, T. (2001) Distribution and origin of tetrodotoxin. J. Toxicol. Toxin Rev., 20, 11–33.
- Mosher, H.S. and Fuhrman, F.A. (1984) Occurrence and origin of tetrodotoxin, in Seafood Toxins (ed. E.P. Ragelis), American Chemical Society, Washington, DC, pp. 333–344.
- Pires, O.R., Sebben, A., Schwartz, E.F. et al. (2005) Further report of the occurrence of tetrodotoxin and new analogues in the Anuran family Brachycephalidae. Toxicon, 45, 73–79.
- Fuhrman, F.A., Fuhrman, G.J., and Mosher, H.S. (1969) Toxin from skin of frogs of the genus Atelopus: differentiation from dendrobatid toxins. Science, 165, 1376–1377.
- Stokes, A.N., Ducey, P.K., Neuman-Lee, L. et al. (2014) Confirmation and distribution of tetrodotoxin for the first time in terrestrial invertebrates: two terrestrial flatworm species (Bipalium adventitium and Bipalium kewense). PLoS ONE, 9, e100718.
- Liu, F.-M., Fu, Y.-M., and Shih, D.Y.-C. (2004) Occurrence of tetrodotoxin poisoning in Nassarius papillosus Alectrion and Nassarius gruneri Niotha. J. Food Drug Anal., 12, 189–192.
- Sato, K.-I., Akai, S., Shoji, H. et al. (2008) Stereoselective and efficient total synthesis of optically active tetrodotoxin from d-glucose. J. Org. Chem., 73, 1234–1242.
- Yasumoto, T., Yasumura, D., Yotsu, M. et al. (1986) Bacterial production of tetrodotoxin and anhydrotetrodotoxin. Agr. Biol. Chem., 50, 793–795.
- Kodama, M., Sato, S., Sakamoto, S. et al. (1996) Occurrence of tetrodotoxin in Alexandrium tamarense, a causative dinoflagellate of paralytic shellfish poisoning. Toxicon, 34, 1101–1105.
- Kono, M., Matsui, T., Furukawa, K. et al. (2008) Accumulation of tetrodotoxin and 4, 9-anhydrotetrodotoxin in cultured juvenile kusafugu Fugu niphobles by dietary administration of natural toxic komonfugu Fugu poecilonotus liver. Toxicon, 51, 1269–1273.
- Wood, S.A., Casas, M., Taylor, D.I. et al. (2012) Depuration of tetrodotoxin and changes in bacterial communities in Pleurobranchaea maculata adults and egg masses maintained in captivity. J. Chem. Ecol., 38, 1342–1350.
- Matsui, T., Taketsugu, S., Sato, H. et al. (1990) Toxification of cultured puffer fish by the administration of tetrodotoxin-producing bacteria. Nippon Suisan Gakk., 56, 705.
- Do, H., Kogure, K., and Simidu, U. (1990) Identification of deep-sea-sediment bacteria which produce tetrodotoxin. Appl. Environ. Microbiol., 56, 1162–1163.
- Matsumura, K. (1998) Production of tetrodotoxin in puffer fish embryos. Environ. Toxicol. Pharmacol., 6, 217–219.
- Hanifin, C.T. and Brodie, E.D. (2002) Tetrodotoxin levels of the rough-skin newt, Taricha granulosa, increase in long-term captivity. Toxicon, 40, 1149–1153.
- Daly, J.W. (1995) The chemistry of poisons in amphibian skin. Proc. Natl. Acad. Sci. U.S.A., 92, 9–13.
- Williams, B.L., Hanifin, C.T., Brodie, E.D. Jr. et al. (2010) Tetrodotoxin affects survival probability of rough-skinned newts (Taricha granulosa) faced with TTX-resistant garter snake predators (Thamnophis sirtalis). Chemoecology, 20, 285–290.
-
Shumway, S.E. (1995) Phycotoxin-related shellfish poisoning: bivalve molluscs are not the only vectors. Rev. Fish. Sci., 3, 1–31.
10.1080/10641269509388565 Google Scholar
- Llewellyn, L.E. (2006) Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat. Prod. Rep., 23, 200–222.
-
Shumway, S.E. (1990) A review of the effects of algal blooms on shellfish and aquaculture. J. World Aquacult. Soc., 21, 65–104.
10.1111/j.1749-7345.1990.tb00529.x Google Scholar
- Cembella, A. (1998) Ecophysiology and metabolism of paralytic shellfish toxins in marine microalgae, in Physiological Ecology of Harmful Algal Blooms, NATO-Advanced Study Institute Series, vol. 41 (eds D.M. Anderson, A.D. Cembella, and G.M. Hallegraeff), Springer-Verlag, Heidelberg, pp. 381–404.
- Wang, D.Z. (2008) Neurotoxins from marine dinoflagellates: a brief review. Mar. Drugs, 6, 349–371.
- EFSA, E. (2009) Marine biotoxins in shellfish–saxitoxin group scientific opinion of the panel on contaminants in the food chain. EFSA J., 1019, 1–3.
- Carmichael, W., Evans, W., Yin, Q. et al. (1997) Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov. Appl. Environ. Microbiol., 63, 3104–3110.
- Carmichael, W.W. (2001) Health effects of toxin-producing cyanobacteria: “The cyanohabs”. Hum. Ecol. Risk Assess., 7, 1393–1407.
- Wiese, M., D'Agostino, P.M., Mihali, T.K. et al. (2010) Neurotoxic alkaloids: saxitoxin and its analogs. Mar. Drugs, 8, 2185–2211.
- Yotsu-Yamashita, M., Sugimoto, A., Takai, A. et al. (1999) Effects of specific modifications of several hydroxyls of tetrodotoxin on its affinity to rat brain membrane. J. Pharmacol. Exp. Ther., 289, 1688–1696.
- Vale, P. (2008) Complex profiles of hydrophobic paralytic shellfish poisoning compounds in Gymnodinium catenatum identified by liquid chromatography with fluorescence detection and mass spectrometry. J. Chromatogr. A, 1195, 85–93.
- Durán-Riveroll, L., Cembella, A., Band-Schmidt, C. et al. (2016) Docking simulation of the binding interactions of saxitoxin analogs produced by the marine dinoflagellate Gymnodinium catenatum to the voltage-gated sodium channel Nav1.4. Toxins, 8, 129.
-
Cembella, A.D., Shumway, S.E., and Larocque, R. (1994) Sequestering and putative biotransformation of paralytic shellfish toxins by the sea scallop Placopecten magellanicus: seasonal and spatial scales in natural populations. J. Exp. Mar. Biol. Ecol., 180, 1–22.
10.1016/0022-0981(94)90075-2 Google Scholar
- Buckley, L.J., Ikawa, M., and Sasner, J.J. Jr. (1976) Isolation of Gonyaulax tamarensis toxins from soft shell clams (Mya arenaria) and a thin-layer chromatographic-fluorometric method for their detection. J. Agric. Food. Chem., 24, 107–111.
-
Shimizu, Y., Alam, M., Oshima, Y.
et al. (1977) Chemistry and distribution of deleterious dinoflagellate toxins, in Marine Natural Products Chemistry (eds D. J. Faulkner and W. H. Fenical), Springer-Verlag, Boston, pp. 261–269.
10.1007/978-1-4684-0802-7_21 Google Scholar
- Shimizu, Y., Alam, M., Oshima, Y. et al. (1975) Presence of four toxins in red tide infested clams and cultured Gonyaulax tamarensis cells. Biochem. Biophys. Res. Commun., 66, 731–737.
- Lawrence, J.F. and Ménard, C. (1991) Determination of marine toxins by liquid chromatography. Fresenius J. Anal. Chem., 339, 494–498.
- Lawrence, J.F. and Niedzwiadek, B. (2001) Quantitative determination of paralytic shellfish poisoning toxins in shellfish by using prechromatographic oxidation and liquid chromatography with fluorescence detection. J. AOAC Int., 84, 1099–1108.
- Sullivan, J.J., Wekell, M.M., and Kentala, L.L. (1985) Application of HPLC for the determination of PSP toxins in shellfish. J. Food Sci., 50, 26–29.
- Luckas, B., Thielert, G., and Peters, K. (1990) Zur problematik der selektiven erfassung von PSP-toxinen aus muscheln. Z. Lebensm. Unters. Forsch., 190, 491–495.
- Oshima, Y., Sugino, K., and Yasumoto, T. (1989) Latest advances in HPLC analysis of paralytic shellfish toxins. Bioact. Mol., 10, 319–326.
- Oshima, Y. (1995) Post-column derivatization HPLC methods for paralytic shellfish poisons, in Manual on Harmful Marine Microalgae (eds Hallegraeff, G.M., Anderson, D.M., and Cembella, A.D.), Monographs on Oceanographic Methodology, Intergovernmental Oceanographic Commission (UNESCO), Paris, pp. 81–94.
- Thielert, G., Kaiser, I., and Luckas, B. (1991) HPLC determination of PSP toxins, in: Proceedings of Symposium on Marine Biotoxins. (ed. J.M. Fremy), Editions CNEVA, Maisons-Alfort, Paris, France pp. 121–125.
- Hummert, C., Ritscher, M., Reinhardt, R. et al. (1997) Analysis of the characteristic PSP profiles of Pyrodinium bahamense and several strains of Alexandrium by HPLC based on ion-pair chromatographic separation, post-column oxidation, and fluorescence detection. Chromatographia, 45, 312–316.
- Yu, R., Hummert, C., Luckas, B. et al. (1998) A modified HPLC method for analysis of PSP toxins in algae and shellfish from China. Chromatographia, 48, 671–676.
- Kirschbaum, J., Hummert, C., and Luckas, B. (1995) Determination of paralytic shellfish poisoning (PSP) toxins by application of ion-exchange HPLC, electrochemical oxidation, and mass detection, in Harmful Marine Algal Blooms, (eds Lassus, P., Arzul, G., Erard-Le Denn, E., Gentien, P., and Marcaillou-Le Baut, C.), Technique et Documentation-Lavoisier, Paris, pp. 309–314.
- Jaime, E., Hummert, C., Hess, P. et al. (2001) Determination of paralytic shellfish poisoning toxins by high-performance ion-exchange chromatography. J. Chromatogr. A, 929, 43–49.
- Bruins, A.P., Covey, T.R., and Henion, J.D. (1987) Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry. Anal. Chem., 59, 2642–2646.
- Quilliam, M.A., Thomson, B.A., Scott, G.J. et al. (1989) Ion-spray mass spectrometry of marine neurotoxins. Rapid Commun. Mass Spectrom., 3, 145–150.
- Thibault, P., Pleasance, S., and Laycock, M. (1991) Analysis of paralytic shellfish poisons by capillary electrophoresis. J. Chromatogr. A, 542, 483–501.
- Locke, S. and Thibault, P. (1994) Improvement in detection limits for the determination of paralytic shellfish poisoning toxins in shellfish tissues using capillary electrophoresis/electrospray mass spectrometry and discontinuous buffer systems. Anal. Chem., 66, 3436–3446.
- Pineiro, N., Leao, J., Martınez, A.G. et al. (1999) Capillary electrophoresis with diode array detection as an alternative analytical method for paralytic and amnesic shellfish toxins. J. Chromatogr. A, 847, 223–232.
- Gago-Martínez, A., Manuel Leão, J., Piñeiro, N. et al. (2003) An application of capillary electrophoresis for the analysis of algal toxins from the aquatic environment. Int. J. Environ. Anal. Chem., 83, 443–456.
- Wolters, A.M., Jayawickrama, D.A., and Sweedler, J.V. (2002) Microscale NMR. Curr. Opin. Chem. Biol., 6, 711–716.
- Jaroszewski, J.W. (2005) Hyphenated NMR methods in natural products research, Part 1: Direct hyphenation. Planta Med., 71, 691–700.
- Matsumura, K. (1995) Reexamination of tetrodotoxin production by bacteria. Appl. Environ. Microbiol., 61, 3468–3470.
- Cembella, A., Doucette, G., and Garthwaite, I. (2003) In vitro assays for phycotoxins, in Manual on Harmful Marine Microalgae (eds Hallegraef, G.M, Anderson, D.M., Cembella, and A.D.), UNESCO, Paris, pp. 297–345.
- Usup, G., Leaw, C.P., Cheah, M.Y. et al. (2004) Analysis of paralytic shellfish poisoning toxin congeners by a sodium channel receptor binding assay. Toxicon, 44, 37–43.
- Davio, S.R. and Fontelo, P.A. (1984) A competitive displacement assay to detect saxitoxin and tetrodotoxin. Anal. Biochem., 141, 199–204.
- Vieytes, M., Cabado, A., Alfonso, A. et al. (1993) Solid-phase radioreceptor assay for paralytic shellfish toxins. Anal. Biochem., 211, 87–93.
- Doucette, G.J., Logan, M.M., Ramsdell, J.S. et al. (1997) Development and preliminary validation of a microtiter plate-based receptor binding assay for paralytic shellfish poisoning toxins. Toxicon, 35, 625–636.
- Powell, C.L. and Doucette, G.J. (1999) A receptor binding assay for paralytic shellfish poisoning toxins: recent advances and applications. Nat. Toxins, 7, 393–400.
- Doucette, G.J., Powell, C.L., Do, E.U. et al. (2000) Evaluation of 11-[3 H]-tetrodotoxin use in a heterologous receptor binding assay for PSP toxins. Toxicon, 38, 1465–1474.
- Garthwaite, I., Ross, K.M., Miles, C.O. et al. (2001) Integrated enzyme-linked immunosorbent assay screening system for amnesic, neurotoxic, diarrhetic, and paralytic shellfish poisoning toxins found in New Zealand. J. AOAC Int., 84, 1643–1648.
- Carlson, R.E., Lever, M.L., Lee, B.W. et al. (1984) Development of immunoassays for paralytic shellfish poisoning: a radioimmunoassay for saxitoxin, in Seafood Toxins, ACS Symposium Series 262, (ed. E.P. Ragelis), American Chemical Society, Washington, DC, pp. 181–192.
- Chu, F. and Fan, T. (1984) Indirect enzyme-linked immunosorbent assay for saxitoxin in shellfish. J. Assoc. Off. Anal. Chem., 68, 13–16.
- Usleber, E., Schneider, E., and Terplan, G. (1991) Direct enzyme immunoassay in microtitration plate and test strip format for the detection of saxitoxin in shellfish. Lett. Appl. Microbiol., 13, 275–277.
- Laycock, M.V., Jellett, J.F., Belland, E.R. et al. (2000) Mist Alert™: a rapid assay for paralytic shellfish poisoning toxins, in Harmful Algal Blooms 2000 (eds Hallegraeff, G.M., Blackburn, S.I., Bolch, C.J., and Lewis, R.J.), IOC of UNESCO, Paris, pp. 254–256.
- Silva, M.A., Jellet, J., Laycock, M.V. et al. (2001) Phytoplankton monitoring using a rapid field test: MIST Alert™) for paralytic shellfish poisons. Can. Tech. Rep. Fish. Aquat. Sci./Rapp. Tech. Can. Sci. Halieut. Aquat., 28–34.
- Turner, A.D., Tarnovius, S., Johnson, S. et al. (2015) Testing and application of a refined rapid detection method for paralytic shellfish poisoning toxins in UK shellfish. Toxicon, 100, 32–41.
- McPartlin, D.A., Lochhead, M.J., Connell, L.B. et al. (2016) Use of biosensors for the detection of marine toxins. Essays Biochem., 60, 49–58.
- Thottumkara, A.P., Parsons, W.H., and Du Bois, J. (2014) Saxitoxin. Angew. Chem., 53, 5760–5784.
-
Mulcahy, J.V., Walker, J.R., Merit, J.E.
et al. (2016) Synthesis of the paralytic shellfish poisons (+)-gonyautoxin 2,(+)-gonyautoxin 3, and (+)-11, 11-dihydroxysaxitoxin. J. Am. Chem. Soc., 138 (18), 5994–6001.
10.1021/jacs.6b02343 Google Scholar
- Kishi, Y., Aratani, M., Fukuyama, T. et al. (1972) Synthetic studies on tetrodotoxin and related compounds. III. Stereospecific synthesis of an equivalent of acetylated tetrodamine. J. Am. Chem. Soc., 94, 9217–9219.
- Xu, S. and Ciufolini, M.A. (2015) Formal synthesis of (±)-tetrodotoxin via the oxidative amidation of a phenol: on the structure of the sato lactone. Org. Lett., 17, 2424–2427.
- Sato, K.-I., Akai, S., Sugita, N. et al. (2005) Novel and stereocontrolled synthesis of (±)-tetrodotoxin from myo-inositol. J. Org. Chem., 70, 7496–7504.
- Ohyabu, N., Nishikawa, T., and Isobe, M. (2003) First asymmetric total synthesis of tetrodotoxin. J. Am. Chem. Soc., 125, 8798–8805.
- Tanino, H., Nakata, T., Kaneko, T. et al. (1977) A stereospecific total synthesis of dl-saxitoxin. J. Am. Chem. Soc., 99, 2818–2819.
- Jacobi, P.A., Martinelli, M.J., and Polanc, S. (1984) Total synthesis of (+)-saxitoxin. J. Am. Chem. Soc., 106, 5594–5598.
- Iwamoto, O., Shinohara, R., and Nagasawa, K. (2009) Total synthesis of (−)-and (+)-decarbamoyloxysaxitoxin and (+)-saxitoxin. Chem. Asian J., 4, 277–285.
- Tsuchiya, S., Cho, Y., Konoki, K. et al. (2014) Synthesis and identification of proposed biosynthetic intermediates of saxitoxin in the cyanobacterium Anabaena circinalis (TA04) and the dinoflagellate Alexandrium tamarense (Axat-2). Org. Biomol. Chem., 12, 3016–3020.
- Tsuchiya, S., Cho, Y., Konoki, K. et al. (2015) Synthesis of a tricyclic bisguanidine compound structurally related to saxitoxin and its identification in paralytic shellfish toxin-producing microorganisms. Chem. Eur. J., 21, 7835–7840.
- Giles, R.L., Sullivan, J.D., Steiner, A.M. et al. (2009) Addition–hydroamination reactions of propargyl cyanamides: rapid access to highly substituted 2-aminoimidazoles. Angew. Chem. Int. Ed., 48, 3116–3120.
- Akimoto, T., Masuda, A., Yotsu-Yamashita, M. et al. (2013) Synthesis of saxitoxin derivatives bearing guanidine and urea groups at C13 and evaluation of their inhibitory activity on voltage-gated sodium channels. Org. Biomol. Chem., 11, 6642–6649.
- Udwary, D.W., Zeigler, L., Asolkar, R.N. et al. (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica . Proc. Natl. Acad. Sci. U.S.A., 104, 10376–10381.
- Shimizu, Y. and Kobayashi, M. (1983) Apparent lack of tetrodotoxin biosynthesis in captured Taricha torosa and Taricha granulosa . Chem. Pharm. Bull., 31, 3625–3631.
- Kotaki, Y. and Shimizu, Y. (1993) 1-Hydroxy-5, 11-dideoxytetrodotoxin, the first N-hydroxy and ring-deoxy derivative of tetrodotoxin found in the newt Taricha granulosa . J. Am. Chem. Soc., 115, 827–830.
- Shimizu, Y., Norte, M., Hori, A. et al. (1984) Biosynthesis of saxitoxin analogs: the unexpected pathway. J. Am. Chem. Soc., 106, 6433–6434.
- Sako, Y., Yoshida, T., Uchida, A. et al. (2001) Purification and characterization of a sulfotransferase specific to N-21 of saxitoxin and gonyautoxin 2+ 3 from the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). J. Phycol., 37, 1044–1051.
- Kellmann, R., Mihali, T.K., Jeon, Y.J. et al. (2008) Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl. Environ. Microbiol., 74, 4044–4053.
- Mihali, T.K., Kellmann, R., and Neilan, B.A. (2009) Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5. BMC Biochem., 10, 8.
- Stüken, A., Orr, R.J., Kellmann, R. et al. (2011) Discovery of nuclear-encoded genes for the neurotoxin saxitoxin in dinoflagellates. PLoS ONE, 6, e20096.
- Soto-Liebe, K., Murillo, A.A., Krock, B. et al. (2010) Reassessment of the toxin profile of Cylindrospermopsis raciborskii T3 and function of putative sulfotransferases in synthesis of sulfated and sulfonated PSP toxins. Toxicon, 56, 1350–1361.
- Yang, I., John, U., Beszteri, S. et al. (2010) Comparative gene expression in toxic versus non-toxic strains of the marine dinoflagellate Alexandrium minutum . BMC Genomics, 11, 248.
- Catterall, W.A., Cestele, S., Yarov-Yarovoy, V. et al. (2007) Voltage-gated ion channels and gating modifier toxins. Toxicon, 49, 124–141.
-
Llewellyn, L.E. (2009) Sodium channel inhibiting marine toxins, in Marine Toxins as Research Tools, (eds Fusetani, N. and Kem, W.R.), Progress in Molecular and Subcellular Biology Vol. 46, Springer-Verlag, Berlin Heidelberg pp. 67–97.
10.1007/978-3-540-87895-7_3 Google Scholar
- Hodgkin, A.L. and Huxley, A.F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117, 500.
- Narahashi, T., Moore, J.W., and Scott, W.R. (1964) Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. Gen. Physiol., 47, 965–974.
- Cestèle, S. and Catterall, W.A. (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie, 82, 883–892.
- Choudhary, G., Shang, L., Li, X. et al. (2002) Energetic localization of saxitoxin in its channel binding site. Biophys. J., 83, 912–919.
- Noda, M., Suzuki, H., Numa, S. et al. (1989) A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett., 259, 213–216.
- Terlau, H., Heinemann, S.H., Stühmer, W. et al. (1991) Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett., 293, 93–96.
- Tubaro, A., Sosa, S., and Hungerford, J. (2012) Toxicology and diversity of marine toxins, in Veterinary Toxicology: Basic and Clinical Principles (ed. R.C. Gupta), Academic Press/Elsevier, Amsterdam, pp. 896–934.
- Llewellyn, L., Negri, A., and Robertson, A. (2006) Paralytic shellfish toxins in tropical oceans. Toxin Rev., 25, 159–196.
- Lipkind, G.M. and Fozzard, H.A. (2000) KcsA crystal structure as framework for a molecular model of the Na+ channel pore. Biochemistry, 39, 8161–8170.
-
Mahdavi, S. and Kuyucak, S. (2014) Molecular dynamics study of binding of μ-conotoxin GIIIA to the voltage-gated sodium channel Nav1.4. PLoS ONE, 9, e105300.
10.1371/journal.pone.0105300 Google Scholar
- Bello, M., Martínez-Archundia, M., and Correa-Basurto, J. (2013) Automated docking for novel drug discovery. Expert Opin. Drug Discovery, 8, 821–834.
- Becker, S., Prusak-Sochaczewski, E., Zamponi, G. et al. (1992) Action of derivatives of μ-conotoxin GIIIA on sodium channels. Single amino acid substitutions in the toxin separately affect association and dissociation rates. Biochemistry, 31, 8229–8238.
- Li, R.A., Ennis, I.L., French, R.J. et al. (2001) Clockwise domain arrangement of the sodium channel revealed by μ-conotoxin (GIIIA) docking orientation. J. Biol. Chem., 276, 11072–11077.
- Cheun, B.S., Loughran, M., Hayashi, T. et al. (1998) Use of a channel biosensor for the assay of paralytic shellfish toxins. Toxicon, 36, 1371–1381.
-
Rosales-Hernández, M.C. and Correa-Basurto, J. (2015) The importance of employing computational resources for the automation of drug discovery. Expert Opin. Drug Discovery, 10, 213–219.
10.1517/17460441.2015.1005071 Google Scholar
- Deeb, O., Rosales-Hernández, M.C., Gómez-Castro, C. et al. (2010) Exploration of human serum albumin binding sites by docking and molecular dynamics flexible ligand–protein interactions. Biopolymers, 93, 161–170.
- Zacarías-Lara, O.J., Correa-Basurto, J., and Bello, M. (2016) Exploring the conformational and binding properties of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 through docking and molecular dynamics simulations. Biopolymers, 105, 393–413.
- Fogh, R.H., Kem, W., and Norton, R.S. (1990) Solution structure of neurotoxin I from the sea anemone Stichodactyla helianthus. A nuclear magnetic resonance, distance geometry, and restrained molecular dynamics study. J. Biol. Chem., 265, 13016–13028.
- Pietra, F. (2009) Docking and MD simulations of the interaction of the tarantula peptide psalmotoxin-1 with ASIC1a channels using a homology model. J. Chem. Inf. Model., 49, 972–977.
- Gordon, D. and Chung, S.-H. (2012) Extension of Brownian dynamics for studying blockers of ion channels. J. Phys. Chem. B, 116, 14285–14294.
-
Groome, J.R. (2014) The voltage sensor module in sodium channels, in Voltage Gated Sodium Channels, (ed. P. Ruben), Springer-Verlag, Berlin Heidelberg, pp. 7–31.
10.1007/978-3-642-41588-3_2 Google Scholar
- Gupta, K., Zamanian, M., Bae, C. et al. (2015) Tarantula toxins use common surfaces for interacting with Kv and ASIC ion channels. eLife, 4, e06774.
- Llewellyn, L.E. (2007) Predictive toxinology: an initial foray using calculated molecular descriptors to describe toxicity using saxitoxins as a model. Toxicon, 50, 901–913.
- Cusick, K.D. and Sayler, G.S. (2013) An overview on the marine neurotoxin, saxitoxin: genetics, molecular targets, methods of detection and ecological functions. Mar. Drugs, 11, 991–1018.
- Harvey, A.L. (2014) Toxins and drug discovery. Toxicon, 92, 193–200.
- Bowman, W. (2006) Neuromuscular block. Br. J. Pharmacol., 147, S277–S286.
- Catterall, W.A. and Morrow, C.S. (1978) Binding to saxitoxin to electrically excitable neuroblastoma cells. Proc. Natl. Acad. Sci. U.S.A., 75, 218–222.
- Catterall, W.A. (1980) Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu. Rev. Pharmacol. Toxicol., 20, 15–43.
- Poli, M., Mende, T.J., and Baden, D.G. (1986) Brevetoxins, unique activators of voltage-sensitive sodium channels, bind to specific sites in rat brain synaptosomes. Mol. Pharmacol., 30, 129–135.
- Fainzilber, M., Kofman, O., Zlotkin, E. et al. (1994) A new neurotoxin receptor site on sodium channels is identified by a conotoxin that affects sodium channel inactivation in molluscs and acts as an antagonist in rat brain. J. Biol. Chem., 269, 2574–2580.
- Worley, J., French, R.J., and Krueger, B.K. (1986) Trimethyloxonium modification of single batrachotoxin-activated sodium channels in planar bilayers. Changes in unit conductance and in block by saxitoxin and calcium. J. Gen. Physiol., 87, 327–349.
- Doyle, D.D., Guo, Y., Lustig, S.L. et al. (1993) Divalent cation competition with [3H] saxitoxin binding to tetrodotoxin-resistant and -sensitive sodium channels. A two-site structural model of ion/toxin interaction. J. Gen. Physiol., 101, 153–182.
- Goldberg, D.S. and McGee, S.J. (2011) Pain as a global public health priority. BMC Public Health, 11, 1.
- Berde, C.B., Athiraman, U., Yahalom, B. et al. (2011) Tetrodotoxin-bupivacaine-epinephrine combinations for prolonged local anesthesia. Mar. Drugs, 9, 2717–2728.
- Kohane, D.S., Yieh, J., Lu, N.T. et al. (1998) A re-examination of tetrodotoxin for prolonged duration local anesthesia. J. Am. Soc. Anesthesiol., 89, 119–131.
- Nieto, F.R., Cobos, E.J., Tejada, M.A. et al. (2012) Tetrodotoxin (TTX) as a therapeutic agent for pain. Mar. Drugs, 10, 281–305.
- Schwartz, D., Duncan, K.G., Fields, H.L. et al. (1998) Tetrodotoxin: anesthetic activity in the de-epithelialized cornea. Graefe's Arch. Clin. Exp. Ophthalmol., 236, 790–794.
- Hagen, N.A., Fisher, K.M., Lapointe, B. et al. (2007) An open-label, multi-dose efficacy and safety study of intramuscular tetrodotoxin in patients with severe cancer-related pain. J. Pain Symptom Manage., 34, 171–182.
- Garrido, R., Lagos, N., Lagos, M. et al. (2007) Treatment of chronic anal fissure by gonyautoxin. Colorectal Dis., 9, 619–624.
- Garrido, R., Lagos, N., Lattes, K. et al. (2005) Gonyautoxin: new treatment for healing acute and chronic anal fissures. Dis. Colon Rectum, 48, 335–343.
- Lattes, K., Venegas, P., Lagos, N. et al. (2009) Local infiltration of gonyautoxin is safe and effective in treatment of chronic tension-type headache. Neurol. Res., 31, 228–233.
-
Hinzpeter, J., Barrientos, C., Zamorano, Á.
et al. (2016) Gonyautoxins: first evidence in pain management in total knee arthroplasty. Toxicon, 119, 180–185.
10.1016/j.toxicon.2016.06.010 Google Scholar
- Rodriguez-Navaro, A.J., Lagos, N., Lagos, M. et al. (2006) Intrasphincteric neosaxitoxin injection: evidence of lower esophageal sphincter relaxation in achalasia. Am. J. Gastroenterol., 101, 2667.
- Rodriguez-Navarro, A.J., Lagos, N., Lagos, M. et al. (2007) Neosaxitoxin as a local anestheticpreliminary observations from a first human trial. J. Am. Soc. Anesthesiol., 106, 339–345.
- Rodriguez-Navarro, A.J., Lagos, M., Figueroa, C. et al. (2009) Potentiation of local anesthetic activity of neosaxitoxin with bupivacaine or epinephrine: development of a long-acting pain blocker. Neurotox. Res., 16, 408–415.
- Manríquez, V., Caperan, D.C., Guzmán, R. et al. (2015) First evidence of neosaxitoxin as a long-acting pain blocker in bladder pain syndrome. Int. Urogynecol. J., 26, 853–858.
- Grimm, J.W. and See, R.E. (2000) Dissociation of primary and secondary reward-relevant limbic nuclei in an animal model of relapse. Neuropsychopharmacology, 22, 473–479.
- Shi, J., Liu, T.-T., Wang, X. et al. (2009) Tetrodotoxin reduces cue-induced drug craving and anxiety in abstinent heroin addicts. Pharmacol. Biochem. Behav., 92, 603–607.